首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of a disaccharide nucleoside (11) by O3′‐glycosylation of 5′‐O‐protected 2′‐deoxyadenosine or its N 6‐benzoylated derivative has been observed to be accompanied by anomerisation to the corresponding α‐anomeric product (12). The latter reaction can be explained by instability of the N‐glycosidic bond of purine 2′‐deoxynucleosides in the presence of Lewis acids. An independent study on the anomerisation of partly blocked 2′‐deoxyadenosine has been carried out. Additionally, transglycosylation has been utilized in the synthesis of 3′‐O‐β‐d‐ribofuranosyl‐2′‐deoxyadenosines and its α‐anomer.  相似文献   

2.
When pyrimidine deoxyribonucleosides are supplied to growing cultures of Diplococcus pneumoniae, they are selectively used for incorporation into deoxyribonucleic acid (DNA). Differently labeled molecules of deoxyuridine, thymidine, and deoxycytidine were used to study the precursor pathways of this organism. Each of these preformed pyrimidine deoxynucleosides is incorporated intact (i.e., without cleavage of the glycosidic bond) and is predominantly recoverable as DNA thymidine. During the utilization of deoxycytidine and deoxyuridine by pneumococci, large proportions of the available precursor are converted to free thymidine, which is secreted back into the growth medium. The biochemical pathways for selective incorporation into DNA and the regulation of concentrations of intracellular thymidine compounds by excretion of free thymidine are discussed.  相似文献   

3.
O-Linked glycosylation is one of the most abundant post-translational modifications of proteins. Within the secretory pathway of higher eukaryotes, the core of these glycans is frequently an N-acetylgalactosamine residue that is α-linked to serine or threonine residues. Glycoside hydrolases in family 101 are presently the only known enzymes to be able to hydrolyze this glycosidic linkage. Here we determine the high-resolution structures of the catalytic domain comprising a fragment of GH101 from Streptococcus pneumoniae TIGR4, SpGH101, in the absence of carbohydrate, and in complex with reaction products, inhibitor, and substrate analogues. Upon substrate binding, a tryptophan lid (residues 724-WNW-726) closes on the substrate. The closing of this lid fully engages the substrate in the active site with Asp-764 positioned directly beneath C1 of the sugar residue bound within the −1 subsite, consistent with its proposed role as the catalytic nucleophile. In all of the bound forms of the enzyme, however, the proposed catalytic acid/base residue was found to be too distant from the glycosidic oxygen (>4.3 Å) to serve directly as a general catalytic acid/base residue and thereby facilitate cleavage of the glycosidic bond. These same complexes, however, revealed a structurally conserved water molecule positioned between the catalytic acid/base and the glycosidic oxygen. On the basis of these structural observations we propose a new variation of the retaining glycoside hydrolase mechanism wherein the intervening water molecule enables a Grotthuss proton shuttle between Glu-796 and the glycosidic oxygen, permitting this residue to serve as the general acid/base catalytic residue.  相似文献   

4.
In principle the hydrogen bonding capacities of 1-(2-deoxy-beta-D-ribofuranosyl)-imidazole-4-carboxamide (dY), and its N-propyl derivative (dYPr), allow them to pair to all four deoxynucleosides. Their triphosphate derivatives (dYTP and dYPrTP) are preferentially incorporated as dATP analogues in a PCR reaction. However, once incorporated into a DNA template their ambiguous hydrogen bonding potential gave rise to misincorporation at frequencies of approximately 3 x 10(-2) per base per amplification. Most of the substitutions were transitions resulting from rotation about the carboxamide bond when part of the template. Between 11-15% of transversions were noted implying rotation of purine or imidazole moieties about the glycosidic bond. As part of a DNA template, dYPr behaved in the same way as dY, despite its propyl moiety. These deoxyimidazole derivatives are among the most radical departures from the canonical bases used so far as substrates in PCR and could be used to generate mutant gene libraries.  相似文献   

5.
Abstract

Acid catalysed transformations of (6S)-6,5′-anhydro-6-hydroxy-1-(2′,3′-O-isopropylidene-β-D-ribofuranosyl)hexahydropyrimidine-2-thione are studied. (6R)-6,2′-anhydro-6-hydroxy-1-(α-D-ribofuranosyl)hexahydropyrimidine-2-thione was formed as a thermodynamically stable product. Two intermediates, (6S)-6,5′-anhydro-6-hydroxy-1-(β-D-ribofuranosyl)hexahydropyrimidine-2-thione and 6-hydroxy-1-(D-ribosyl)hexahydropyrimidine-2-thione and products of cleavage of glycosidic bond were identified in the reaction mixtures. Results of X-ray structural determination of the synthesised nucleosides are presented.  相似文献   

6.
Abstract

We have synthesised and examined the enzymatic incorporation properties of the 5′-triphosphates of 2′-deoxyribosyl pyrrole 3-monocarboxamide (dMTP) and 2′-deoxyribosyl pyrrole 3,4-dicarboxamide (dDTP). These analogues we had hoped would behave as ambivalent base analogues in that they can present two alternative hydrogen-bonding faces either by rotation about the carboxamide group or about the glycosidic bond. The two pyrrole derivatives, dMTP and dDTP, exhibit a preference for incorporation with Klenow polymerase. They are preferentially incorporated as either A or C.  相似文献   

7.
1. 5′-Methylthioformycin, a structural analog of 5′-methylthioadenosine in which the N-C glycosidic bond is substituted by a C-C bond, has been synthesized by a newly developed procedure. 2. Membrane permeability of the molecule has been compared to that of methylthioadenosine in intact human erythrocytes and Friend erythroleukemia cells. The formycinyl compound is taken up with a rate significantly lower than that of 5′-methylthioadenosine and is not metabolized by the cells. 3. 5′-Methylthioformycin inhibits Friend erythroleukemia cells' growth: the effect is dose-dependent, fully reversible and not caused by cytotoxicity. 4. Several enzymes related to methylthioadenosine metabolism are inhibited by methylthioformycin. Rat liver methylthioadenosine phosphorylase is competitively inhibited with a Ki value of 2 μM. Among the propylamine transferases tested only rat brain spermine synthase is significantly inhibited, while rat brain spermidine synthase is less sensitive. Rat liver S-adenosylhomocysteine hydrolase is irreversibly inactivated with 50% inhibition at 400 μM methylthioformycin. 5′-Methylthioformycin does not exert any significant effect on protein carboxyl-O-methyltransferase. Inferences about the mechanism of the antiproliferative effect of the drug have been drawn from the above results.  相似文献   

8.
Anand R  Kaminski PA  Ealick SE 《Biochemistry》2004,43(9):2384-2393
The structure of class I N-deoxyribosyltransferase from Lactobacillus helveticus was determined by X-ray crystallography. Unlike class II N-deoxyribosyltransferases, which accept either purine or pyrimidine deoxynucleosides, class I enzymes are specific for purines as both the donor and acceptor base. Both class I and class II enzymes are highly specific for deoxynucleosides. The class I structure reveals similarities with the previously determined class II enzyme from Lactobacillus leichmanni [Armstrong, S. A., Cook, W. J., Short, S. A., and Ealick, S. E. (1996) Structure 4, 97-107]. The specificity of the class I enzyme for purine deoxynucleosides can be traced to a loop (residues 48-62), which shields the active site in the class II enzyme. In the class I enzyme, the purine base itself shields the active site from the solvent, while the smaller pyrimidine base cannot. The structure of the enzyme with a bound ribonucleoside shows that the nucleophilic oxygen atom of Glu101 hydrogen bonds to the O2' atom, rendering it unreactive and thus explaining the specificity for 2'-deoxynucleosides. The structure of a ribosylated enzyme intermediate reveals movements that occur during cleavage of the N-glycosidic bond. The structures of complexes with substrates and substrate analogues show that the purine base can bind in several different orientations, thus explaining the ability of the enzyme to catalyze alternate deoxyribosylation at the N3 or N7 position.  相似文献   

9.
The comparative analysis of RNA-hydrolyzing activity of albumin from human serum and albumin expressed in methylotrophic yeast Pichia pastoris has been carried out. The rate of polyribonucleotide phosphodiester bond cleavage in the presence of recombinant albumin has been found to be similar to that of the reaction mediated by the native protein. According to 31P NMR data, RNA hydrolysis follows the mechanism of intermolecular trans-esterification to yield 2′,3′-cyclophosphodiester reaction products that are further slowly hydrolyzed to form nucleoside-3′- and nucleoside-2′-phosphates. Analysis of pH dependence suggests an acid–base mechanism of catalysis. The catalytic activity and substrate specificity of albumin in RNA hydrolysis distinguish it from human ribonucleases.  相似文献   

10.
To elucidate the contribution of pyrimidine in DNA strand breaks caused by low-energy electrons (LEEs), theoretical investigations of the LEE attachment-induced C3′–O3′, and C5′–O5′ σ bond as well as N-glycosidic bond breaking of 2′-deoxycytidine-3′,5′-diphosphate and 2′-deoxythymidine-3′,5′-diphosphate were performed using the B3LYP/DZP++ approach. The base-centered radical anions are electronically stable enough to assure that either the C–O or glycosidic bond breaking processes might compete with the electron detachment and yield corresponding radical fragments and anions. In the gas phase, the computed glycosidic bond breaking activation energy (24.1 kcal/mol) excludes the base release pathway. The low-energy barrier for the C3′–O3′ σ bond cleavage process (∼6.0 kcal/mol for both cytidine and thymidine) suggests that this reaction pathway is the most favorable one as compared to other possible pathways. On the other hand, the relatively low activation energy barrier (∼14 kcal/mol) for the C5′–O5′ σ bond cleavage process indicates that this bond breaking pathway could be possible, especially when the incident electrons have relatively high energy (a few electronvolts). The presence of the polarizable medium greatly increases the activation energies of either C–O σ bond cleavage processes or the N-glycosidic bond breaking process. The only possible pathway that dominates the LEE-induced DNA single strands in the presence of the polarizable surroundings (such as in an aqueous solution) is the C3′–O3′ σ bond cleavage (the relatively low activation energy barrier, ∼13.4 kcal/mol, has been predicted through a polarizable continuum model investigation). The qualitative agreement between the ratio for the bond breaks of C5′–O5′, C3′–O3′ and N-glycosidic bonds observed in the experiment of oligonucleotide tetramer CGAT and the theoretical sequence of the bond breaking reaction pathways have been found. This consistency between the theoretical predictions and the experimental observations provides strong supportive evidences for the base-centered radical anion mechanism of the LEE-induced single-strand bond breaking around the pyrimidine sites of the DNA single strands.  相似文献   

11.
Arbutin and four novel iridoid glycoside esters, named opulus iridoids I–IV, have been isolated from foliage of Viburnum opulus (Caprifoliaceae). Each opulus iridoid constitutes an inseparable mixture of two compounds, differing by containing either 2-methyl- or 3-methylbutyric acid in ester linkage at the 1-OH-group in an iridoid glycoside. In all glycosides 2′,3′-di-O-acetyl-β-D-allopyranose is linked through a glycosidic bond to C-11 in the iridoid aglycone. The opulus iridoids differ by the degree of acetylation of the aglycone and by the attachment, in III and IV, of a β-D-xylopyranosyl group at C-4 of the allose moiety. The structures have been elucidated by 1H and 13C-NMR spectroscopy and by cleavage of the glycosidic linkage with boron trifluoride etherate in acetic anhydride, yielding the acetates of the cyclized aglycone and of the appropriate mono- or disaccharide. This is the second report of an iridoid attached to a sugar other than glucose and the second time allose has been encountered in higher plants. The systematic position of Viburnum is briefly discussed.  相似文献   

12.
A double mutant of human purine nucleoside phosphorylase (hDM) with the amino acid mutations Glu201Gln:Asn243Asp cleaves adenosine‐based prodrugs to their corresponding cytotoxic drugs. When fused to an anti‐tumor targeting component, hDM is targeted to tumor cells, where it effectively catalyzes phosphorolysis of the prodrug, 2‐fluoro‐2′‐deoxyadenosine (F‐dAdo) to the cytotoxic drug, 2‐fluoroadenine (F‐Ade). This cytotoxicity should be restricted only to the tumor microenvironment, because the endogenously expressed wild type enzyme cannot use adenosine‐based prodrugs as substrates. To gain insight into the interaction of hDM with F‐dAdo, we have determined the crystal structures of hDM with F‐dAdo and F‐Ade. The structures reveal that despite the two mutations, the overall fold of hDM is nearly identical to the wild type enzyme. Importantly, the residues Gln201 and Asp243 introduced by the mutation form hydrogen bond contacts with F‐dAdo that result in its binding and catalysis. Comparison of substrate and product complexes suggest that the side chains of Gln201 and Asp243 as well as the purine base rotate during catalysis possibly facilitating cleavage of the glycosidic bond. The two structures suggest why hDM, unlike the wild‐type enzyme, can utilize F‐dAdo as substrate. More importantly, they provide a critical foundation for further optimization of cleavage of adenosine‐based prodrugs, such as F‐dAdo by mutants of human purine nucleoside phosphorylase.  相似文献   

13.
Abstract

5′-O-Trityl-O2,3′-cycloanhydrothymidine (1) heated at 150°C in the presence of O,O-diethyl phosphate or O,O-diethyl phosphorothioate anions undergoes rearrangement into N3-isomer (2); its structure was established by both advanced NMR methods and X-ray crystallographic studies. The most probable mechanism of 1→2 rearrangement relies upon reversibility of glycosidic bond cleavage process.  相似文献   

14.
Werner RM  Stivers JT 《Biochemistry》2000,39(46):14054-14064
The DNA repair enzyme uracil DNA glycosylase catalyzes the first step in the uracil base excision repair pathway, the hydrolytic cleavage of the N-glycosidic bond of deoxyuridine in DNA. Here we report kinetic isotope effect (KIE) measurements that have allowed the determination of the transition-state structure for this important reaction. The small primary (13)C KIE (=1.010 +/- 0.009) and the large secondary alpha-deuterium KIE (=1.201 +/- 0.021) indicate that (i) the glycosidic bond is essentially completely broken in the transition state and (ii) there is significant sp(2) character at the anomeric carbon. Large secondary beta-deuterium KIEs were observed when [2'R-(2)H] = 1.102 +/- 0.011 and [2'S-(2)H] = 1.106 +/- 0.010. The nearly equal and large magnitudes of the two stereospecific beta-deuterium KIEs indicate strong hyperconjugation between the elongated glycosidic bond and both of the C2'-H2' bonds. Geometric interpretation of these beta-deuterium KIEs indicates that the furanose ring adopts a mild 3'-exo sugar pucker in the transition state, as would be expected for maximal stabilization of an oxocarbenium ion. Taken together, these results strongly indicate that the reaction proceeds through a dissociative transition state, with complete dissociation of the uracil anion followed by addition of water. To our knowledge, this is the first transition-state structure determined for enzymatic cleavage of the glycosidic linkage in a pyrimidine deoxyribonucleotide.  相似文献   

15.
2′-O-Carbamoyluridine (Ucm) was synthesized and incorporated into DNAs and 2′-O-Me-RNAs. The oligonucleotides incorporating Ucm formed less stable duplexes with their complementary and Ucm–U, Ucm–C single-base mismatched DNAs and RNAs in comparison with those without the carbamoyl group. On the contrary, the Tm analyses revealed that the duplexes with a mismatched Ucm–G base pair showed almost the same thermostability as the corresponding unmodified duplexes. Molecular dynamics (MD) simulations of the Ucm-modified 2′-O-Me-RNA/RNA duplexes with Ucm–G mismatched base pair suggested that the carbamoyl group could participate in the Ucm–G base pair by an additional intermolecular hydrogen bond between the carbamoyl oxygen and the H2 of the guanine base.  相似文献   

16.
17.
Abstract

Kinetic parametrs for enzymatic cleavage of the glycosidic bond (phosphorolysis) of ten N(7)-substituted guanosines were determined, and used to establish a structure-activity relation for the Michaelis constants. Results were compared with those for acid-catalyzed cleavage of the glycosidic bonds, and are consistent with a mechanism for phosphorolysis via protonation of the purine ring N(7).  相似文献   

18.
Narine AA  Watson JN  Bennet AJ 《Biochemistry》2006,45(30):9319-9326
The sialidase from Micromonospora viridifaciens has been found to catalyze the hydrolysis of aryl 2-thio-alpha-D-sialosides with remarkable efficiency: the first- and second-order rate constants, kcat and kcat/Km, for the enzyme-catalyzed hydrolysis of PNP-S-NeuAc are 196 +/- 5 s(-1) and (6.7 +/- 0.7) x 10(5) M(-1) s(-1), respectively. A reagent panel of eight aryl 2-thio-alpha-D-sialosides was synthesized and used to probe the mechanism for the M. viridifaciens sialidase-catalyzed hydrolysis reaction. In the case of the wild-type enzyme, the derived Br?nsted parameters (beta(lg)) on kcat and kcat/Km are -0.83 +/- 0.11 and -1.27 +/- 0.17 for substrates with thiophenoxide leaving groups of pKa values > or = 4.5. For the general-acid mutant, D92G, the derived beta(lg) value on kcat for the same set of leaving groups is -0.82 +/- 0.12. When the conjugate acid of the departing thiophenol was < or = 4.5, the derived Br?nsted slopes for both the wild-type and the D92G mutant sialidase were close to zero. In contrast, the nucleophilic mutant, Y370G, did not display a similar break in the Br?nsted plots, and the corresponding values for beta(lg), for the three most reactive aryl 2-thiosialosides, on kcat and kcat/Km are -0.76 +/- 0.28 and -0.84 +/- 0.04, respectively. Thus, for the Y370G enzyme glycosidic C-S bond cleavage is rate-determining for both kcat and kcat/Km, whereas, for both the wild-type and D92G mutant enzymes, the presented data are consistent with a change in rate-determining step from glycosidic C-S bond cleavage for substrates in which the pKa of the conjugate acid of the leaving group is > or = 4.5, to either deglycosylation (kcat) or a conformational change that occurs prior to C-S bond cleavage (kcat/Km) for the most activated leaving groups. Thus, the enzyme-catalyzed hydrolysis of 2-thiosialosides is strongly catalyzed by the nucleophilic tyrosine residue, yet the C-S bond cleavage does not require the conserved aspartic acid residue (D92) to act as a general-acid catalyst.  相似文献   

19.
Abstract

The magnetic shielding constant of the different 13C and 13H nuclei of a deoxyribose are calculated for the C2′ endo and C3′ endo puckerings of the furanose ring as a function of the conformation about the C4′C5′ bond. For the carbons the calculated variations are of several ppm, the C3′ endo puckering corresponding in most cases to a larger shielding than the C2′ endo one. For the protons the calculated variations of chemical shifts are all smaller than 1.3 ppm, that is of the order of magnitude of the variation of the geometrical shielding produced on these protons by the other units of a DNA double helix, with a change of the overall structure of the helix. The computations carried out on the deoxyribose ?3′ and 5′ phosphates for several conformations of the phosphate group tend to show that the changes of conformation of the charged group of atoms produce chemical shift variations smaller than the two conformational parameters of the deoxyribose itself. The calculations carried out for a ribose do give the general features of the differences between the carbon and proton spectra of deoxynucleosides and nucleosides.

The comparison of the measured and calculated phosphorylation shifts tend to show that the counterion contributes significantly, for some nuclei of the deoxyribose, to the shifts measured. The calculated magnitude of this polarization effect on carbon shifts suggests a tentative qualitative interpretation of carbon spectra of the ribose part of DNA double helices.  相似文献   

20.
Retroviral proteases (PRs) have a unique specificity that allows cleavage of sites with or without a P1′ proline. A P1′ proline is required at the MA/CA cleavage site due to its role in a post-cleavage conformational change in the capsid protein. However, the HIV-1 PR prefers to have large hydrophobic amino acids flanking the scissile bond, suggesting that PR recognizes two different classes of substrate sequences. We analyzed the cleavage rate of over 150 combinations of six different HIV-1 cleavage sites to explore rate determinants of cleavage. We found that cleavage rates are strongly influenced by the two amino acids flanking the amino acids at the scissile bond (P2–P1/P1′–P2′), with two complementary sets of rules. When P1′ is proline, the P2 side chain interacts with a polar region in the S2 subsite of the PR, while the P2′ amino acid interacts with a hydrophobic region of the S2′ subsite. When P1′ is not proline, the orientations of the P2 and P2′ side chains with respect to the scissile bond are reversed; P2 residues interact with a hydrophobic face of the S2 subsite, while the P2′ amino acid usually engages hydrophilic amino acids in the S2′ subsite. These results reveal that the HIV-1 PR has evolved bi-functional S2 and S2′ subsites to accommodate the steric effects imposed by a P1′ proline on the orientation of P2 and P2′ substrate side chains. These results also suggest a new strategy for inhibitor design to engage the multiple specificities in these subsites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号