首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Activation of executioner caspases during receptor-mediated apoptosis in type II cells requires the engagement of the mitochondrial apoptotic pathway. Although it is well established that recruitment of mitochondria in this context involves the cleavage of Bid to truncated Bid (tBid), the precise post-mitochondrial signaling responsible for executioner caspase activation is controversial. Here, we used distinct clones of type II Jurkat T-lymphocytes in which the mitochondrial apoptotic pathway had been inhibited to investigate the molecular requirements necessary for Fas-induced apoptosis. Cells overexpressing either Bcl-2 or Bcl-xL were protected from apoptosis induced by agonistic anti-Fas antibody. By comparison, Apaf-1-deficient Jurkat cells were sensitive to anti-Fas, exhibiting Bid cleavage, Bak activation, the release of cytochrome c and Smac, and activation of executioner caspase-3. Inhibiting downstream caspase activation with the pharmacological inhibitor Z-DEVD-fmk or by expressing the BIR1/BIR2 domains of X-linked inhibitor of apoptosis protein (XIAP) decreased all anti-Fas-induced apoptotic changes. Additionally, pretreatment of Bcl-xL-overexpressing cells with a Smac mimetic sensitized these cells to Fas-induced apoptosis. Combined, our findings strongly suggest that Fas-mediated activation of executioner caspases and induction of apoptosis do not depend on apoptosome-mediated caspase-9 activation in prototypical type II cells.  相似文献   

2.
Upstream regulatory role for XIAP in receptor-mediated apoptosis   总被引:4,自引:0,他引:4       下载免费PDF全文
X-linked inhibitor of apoptosis (XIAP) is an endogenous inhibitor of cell death that functions by suppressing caspases 3, 7, and 9. Here we describe the establishment of Jurkat-derived cell lines stably overexpressing either full-length XIAP or a truncation mutant of XIAP that can only inhibit caspase 9. Characterization of these cell lines revealed that following CD95 activation full-length XIAP supported both short- and long-term survival as well as proliferative capacity, in contrast to the truncation mutant but similar to Bcl-x(L). Full-length XIAP was also able to inhibit CD95-mediated caspase 3 processing and activation, the mitochondrial release of cytochrome c and Smac/DIABLO, and the loss of mitochondrial membrane potential, whereas the XIAP truncation mutant failed to prevent any of these cell death events. Finally, suppression of XIAP levels by RNA interference sensitized Bcl-x(L)-overexpressing cells to death receptor-induced apoptosis. These data demonstrate for the first time that full-length XIAP inhibits caspase activation required for mitochondrial amplification of death receptor signals and that, by acting upstream of mitochondrial activation, XIAP supports the long-term proliferative capacity of cells following CD95 stimulation.  相似文献   

3.
Efficient apoptosis requires Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP), which releases death-promoting proteins cytochrome c and Smac to the cytosol, which activate apoptosis and inhibit X-linked inhibitor of apoptosis protein (XIAP) suppression of executioner caspases, respectively. We recently identified that in response to Bcl-2 homology domain 3 (BH3)-only proteins and mitochondrial depolarization, XIAP can permeabilize and enter mitochondria. Consequently, XIAP E3 ligase activity recruits endolysosomes into mitochondria, resulting in Smac degradation. Here, we explored mitochondrial XIAP action within the intrinsic apoptosis signaling pathway. Mechanistically, we demonstrate that mitochondrial XIAP entry requires Bax or Bak and is antagonized by pro-survival Bcl-2 proteins. Moreover, intramitochondrial Smac degradation by XIAP occurs independently of Drp1-regulated cytochrome c release. Importantly, mitochondrial XIAP actions are activated cell-intrinsically by typical apoptosis inducers TNF and staurosporine, and XIAP overexpression reduces the lag time between the administration of an apoptotic stimuli and the onset of mitochondrial permeabilization. To elucidate the role of mitochondrial XIAP action during apoptosis, we integrated our findings within a mathematical model of intrinsic apoptosis signaling. Simulations suggest that moderate increases of XIAP, combined with mitochondrial XIAP preconditioning, would reduce MOMP signaling. To test this scenario, we pre-activated XIAP at mitochondria via mitochondrial depolarization or by artificially targeting XIAP to the intermembrane space. Both approaches resulted in suppression of TNF-mediated caspase activation. Taken together, we propose that XIAP enters mitochondria through a novel mode of mitochondrial permeabilization and through Smac degradation can compete with canonical MOMP to act as an anti-apoptotic tuning mechanism, reducing the mitochondrial contribution to the cellular apoptosis capacity.  相似文献   

4.
Bax and Bak promote apoptosis by perturbing the permeability of the mitochondrial outer membrane and facilitating the release of cytochrome c by a mechanism that is still poorly defined. During apoptosis, Bax and Bak also promote fragmentation of the mitochondrial network, possibly by activating the mitochondrial fission machinery. It has been proposed that Bax/Bak-induced mitochondrial fission may be required for release of cytochrome c from the mitochondrial intermembrane space, although this has been a subject of debate. Here we show that Bcl-xL, as well as other members of the apoptosis-inhibitory subset of the Bcl-2 family, antagonized Bax and/or Bak-induced cytochrome c release but failed to block mitochondrial fragmentation associated with Bax/Bak activation. These data suggest that Bax/Bak-initiated remodeling of mitochondrial networks and cytochrome c release are separable events and that Bcl-2 family proteins can influence mitochondrial fission-fusion dynamics independent of apoptosis.  相似文献   

5.
The extent to which the BH3-only protein Bid is important for intrinsic (mitochondria-mediated) apoptotic cell death induced by genotoxic stress remains controversial. In the present study, we examine this issue using a panel of gene-manipulated Bax-deficient Jurkat T-lymphocytes. Cells stably depleted of Bid were far less sensitive than control-transfected cells to etoposide-induced apoptosis. In particular, drug-induced Bak activation, cytochrome c release, loss of mitochondrial membrane potential, and caspase activation were all decreased in cells lacking Bid. Reconstitution experiments using recombinant proteins and permeabilized Bid-deficient cells demonstrated that truncated Bid (tBid), but not full-length Bid, potently induced Bak activation and the release of cytochrome c. Further, caspase-8-deficient Jurkat cells efficiently cleaved Bid and were sensitive to drug-induced apoptosis. By comparison, Apaf-1-deficient cells, as well as cells overexpressing full-length X-linked inhibitor of apoptosis protein (XIAP) or the BIR1/BIR2 domains of XIAP, failed to cleave Bid in response to genotoxic stress. These data suggest that tBid plays an important regulatory role in the execution of DNA damage-induced cytochrome c release and apoptosis. However, the fact that cleavage of Bid to tBid is mediated by executioner caspases suggests that a self-amplifying feed forward loop involving caspases, Bid, and mitochondria may help determine irreversible commitment to apoptosis.Apoptosis is an active form of cell death that plays an essential role during normal embryonic development and in the maintenance of tissue homeostasis in the adult organism (1). Consequently, dysregulation of apoptosis has been implicated as a contributing factor to the onset of different pathological conditions, including cancer. In addition, it is now generally accepted that many genotoxic anticancer drugs are effective against tumor cells for their ability to induce mitochondria-mediated apoptosis (2). Similarly, mutations or the altered expression of pro- and anti-apoptotic proteins can contribute to the development of drug resistance.Execution of apoptosis is mediated by a family of cysteine-dependent aspartate-specific proteases (caspases). During true mitochondria-mediated apoptosis, members of the Bcl-2 family of proteins are the primary regulators of caspase activation for their role in controlling mitochondrial outer membrane permeabilization (MOMP)2 (3). The process of MOMP results in the release of cytochrome c, second mitochondria-derived activator of caspase (Smac, also known as DIABLO), and Omi (also known as HtrA2) into the cytosol where they converge to promote the activation of caspase-9 within the apoptotic protease-activating factor-1 (Apaf-1) apoptosome complex. The Bcl-2 family contains proteins with opposing functions, and it is generally thought that the induction of MOMP requires the activation of either Bak or Bax triggered by a Bcl-2 homology 3 (BH3)-only protein (46). Indeed, evidence in the literature indicates that cells lacking either Bak or Bax exhibit only subtle defects in MOMP, whereas doubly deficient cells are often found to be highly resistant to mitochondria-mediated apoptosis (7, 8).At present, there are two models for the activation of Bax or Bak by BH3-only proteins. One model argues that BH3-only proteins function as either “sensitizer” (e.g. Bad and Noxa) or “activator” proteins (e.g. truncated Bid (tBid), Bim, and perhaps Puma) (9). In this scenario, a sensitizer protein is needed to displace an activator protein from a prosurvival protein (e.g. Bcl-2, Bcl-xL, or Mcl-1) to activate Bak or Bax. The second model argues that BH3-only proteins bind and inhibit the function of prosurvival Bcl-2 proteins, which normally bind to and inhibit Bak and Bax (10, 11). Of the seven or so known BH3-only proteins (6), Bid is unique in that it requires post-translational modification for activation, most notably involving caspase-8-mediated cleavage to tBid (1214). Bid normally resides in the cytosol and possibly the nucleus (15). Upon being cleaved, the C-terminal fragment (tBid) is myristoylated at its newly exposed N terminus, translocates to the outer mitochondrial membrane (OMM), and/or activates Bak or Bax protein (16). Recently, it was shown that the N-terminal cleavage fragment of Bid is quickly ubiquitinated for degradation and that this degradation is necessary for the pro-apoptotic function of tBid (17). The same study also concluded that, although full-length Bid is capable of translocating to the OMM, it is not able to induce MOMP on its own (17). A well characterized example of tBid involvement during apoptosis is in the engagement of the mitochondrial apoptotic pathway in so-called type II cells upon activation of the extrinsic pathway (18).Here, we have investigated whether Bid plays a functional role in the induction of MOMP during apoptosis in response to the genotoxic anticancer drug etoposide. To that end, we used Bax-deficient Jurkat cells that are stably depleted of Bid and evaluated the extent to which these cells underwent drug-induced MOMP. In addition, Jurkat clones in which the intrinsic pathway had been inhibited due to the stable knockdown of Apaf-1 or the overexpression of full-length XIAP or the baculoviral IAP repeats 1 and 2 (BIR1/BIR2) of XIAP were used to gain insight into the molecular requirements necessary for cleavage of Bid to tBid during drug-induced apoptosis. Strikingly, the data showed that etoposide-induced apoptosis was decreased in Bid-deficient Jurkat cells. In particular, cells lacking Bid expression exhibited decreased Bak activation, cytochrome c release, loss of mitochondrial membrane potential (ΔΨ), and caspase activation. Further, incubation of permeabilized Bid-deficient cells with recombinant tBid, but not full-length Bid, induced Bak dimerization and cytochrome c release. Significantly, we also found that cleavage of Bid to tBid occurred strictly downstream of Apaf-1 by a mechanism that required active executioner caspases.  相似文献   

6.
Resveratrol, a naturally occurring phytoalexin, is known to induce apoptosis in multiple cancer cell types, but the underlying molecular mechanisms remain unclear. Here, we show that resveratrol induced p53-independent, X-linked inhibitor of apoptosis protein (XIAP)-mediated translocation of Bax to mitochondria where it underwent oligomerization to initiate apoptosis. Resveratrol treatment promoted interaction between Bax and XIAP in the cytosol and on mitochondria, suggesting that XIAP plays a critical role in the activation and translocation of Bax to mitochondria. This process did not involve p53 but required accumulation of Bim and t-Bid on mitochondria. Bax primarily underwent homo-oligomerization on mitochondria and played a major role in release of cytochrome c to the cytosol. Bak, another key protein that regulates the mitochondrial membrane permeabilization, did not interact with p53 but continued to associate with Bcl-xL. Thus, the proapoptotic function of Bak remained suppressed during resveratrol-induced apoptosis. Caspase-9 silencing inhibited resveratrol-induced caspase activation, whereas caspase-8 knockdown did not affect caspase activity, suggesting that resveratrol induces caspase-9-dependent apoptosis. Together, our findings characterize the molecular mechanisms of resveratrol-induced caspase activation and subsequent apoptosis in cancer cells.  相似文献   

7.
Although murine embryonic fibroblasts (MEFs) with Bax or Bak deleted displayed no defect in apoptosis signaling, MEFs with Bax and Bak double knock-out (DKO) showed dramatic resistance to diverse apoptotic stimuli, suggesting that Bax and Bak are redundant but essential regulators for apoptosis signaling. Chelerythrine has recently been identified as a Bcl-xL inhibitor that is capable of triggering apoptosis via direct action on mitochondria. Here we report that in contrast to classic apoptotic stimuli, chelerythrine is fully competent in inducing apoptosis in the DKO MEFs. Wild-type and DKO MEFs are equally sensitive to chelerythrine-induced morphological and biochemical changes associated with apoptosis phenotype. Interestingly, chelerythrine-mediated release of cytochrome c is rapid and precedes Bax translocation and integration. Although the BH3 peptide of Bim is totally inactive in releasing cytochrome c from isolated mitochondria of DKO MEFs, chelerythrine maintains its potency and efficacy in inducing direct release of cytochrome c from these mitochondria. Furthermore, chelerythrine-mediated mitochondrial swelling and loss in mitochondrial membrane potential (DeltaPsi(m)) are inhibited by cyclosporine A, suggesting that mitochondrial permeability transition pore is involved in chelerythrine-induced apoptosis. Although certain apoptotic stimuli have been shown to elicit cytotoxic effect in the DKO MEFs through alternate death mechanisms, chelerythrine does not appear to engage necrotic or autophagic death mechanism to trigger cell death in the DKO MEFs. These results, thus, argue for the existence of an alternative Bax/Bak-independent apoptotic mechanism that involves cyclosporine A-sensitive mitochondrial membrane permeability.  相似文献   

8.
Many viruses have evolved strategies to counteract cellular immune responses, including apoptosis. Vaccinia virus, a member of the poxvirus family, encodes an antiapoptotic protein, F1L. F1L localizes to mitochondria and inhibits apoptosis by preventing the release of cytochrome c by an undetermined mechanism (S. T. Wasilenko, T. L. Stewart, A. F. Meyers, and M. Barry, Proc. Natl. Acad. Sci. USA 100:14345-14350, 2003; T. L. Stewart, S. T. Wasilenko, and M. Barry, J. Virol. 79:1084-1098, 2005). Here, we show that in the absence of an apoptotic stimulus, F1L associates with Bak, a proapoptotic member of the Bcl-2 family that plays a pivotal role in the release of cytochrome c. Cells infected with vaccinia virus were resistant to Bak oligomerization and the initial N-terminal exposure of Bak following the induction of apoptosis with staurosporine. A mutant vaccinia virus missing F1L was no longer able to inhibit apoptosis or Bak activation. In addition, the expression of F1L was essential to inhibit tBid-induced cytochrome c release in both wild-type murine embryonic fibroblasts (MEFs) and Bax-deficient MEFs, indicating that F1L could inhibit apoptosis in the presence and absence of Bax. tBid-induced Bak oligomerization and N-terminal exposure of Bak in Bax-deficient MEFs were inhibited during virus infection, as assessed by cross-linking and limited trypsin proteolysis. Infection with the F1L deletion virus no longer provided protection from tBid-induced Bak activation and apoptosis. Additionally, infection of Jurkat cells with the F1L deletion virus resulted in cellular apoptosis, as measured by loss of the inner mitochondrial membrane potential, caspase 3 activation, and cytochrome c release, indicating that the presence of F1L was pivotal for inhibiting vaccinia virus-induced apoptosis. Our data indicate that F1L expression during infection inhibits apoptosis and interferes with the activation of Bak.  相似文献   

9.
Exposure of cells to hyperthermia is known to induce apoptosis, although the underlying mechanisms are only partially understood. Here, we examine the molecular requirements necessary for heat-induced apoptosis using genetically modified Jurkat T-lymphocytes. Cells stably overexpressing Bcl-2/Bcl-x(L) or stably depleted of Apaf-1 were completely resistant to heat-induced apoptosis, implicating the involvement of the mitochondria-mediated pathway. Pretreatment of wild-type cells with the cell-permeable biotinylated general caspase inhibitor b-VAD-fmk (biotin-Val-Ala-Asp(OMe)-CH(2)F) both inhibited heat-induced apoptosis and affinity-labeled activated initiator caspase-2, -8, and -9. Despite this finding, however, cells engineered to be deficient in caspase-8, caspase-2, or the caspase-2 adaptor protein RAIDD (receptor-interacting protein (RIP)-associated Ich-1/CED homologous protein with death domain) remained susceptible to heat-induced apoptosis. Additionally, b-VAD-fmk failed to label any activated initiator caspase in Apaf-1-deficient cells exposed to hyperthermia. Cells lacking Apaf-1 or the pro-apoptotic BH3-only protein Bid exhibited lower levels of heat-induced Bak activation, cytochrome c release, and loss of mitochondrial membrane potential, although cleavage of Bid to truncated Bid (tBid) occurred downstream of caspase-9 activation. Combined, the data suggest that caspase-9 is the critical initiator caspase activated during heat-induced apoptosis and that tBid may function to promote cytochrome c release during this process as part of a feed-forward amplification loop.  相似文献   

10.
Vaccinia virus, the prototypic member of the orthopoxvirus genus, encodes the mitochondrial-localized protein F1L that functions to protect cells from apoptotic death and inhibits cytochrome c release. We previously showed that F1L interacts with the pro-apoptotic Bcl-2 family member Bak and inhibits activation of Bak following an apoptotic stimulus (Wasilenko, S. T., Banadyga, L., Bond, D., and Barry, M. (2005) J. Virol. 79, 14031-14043). In addition to Bak, the pro-apoptotic protein Bax is also capable of initiating cytochrome c release suggesting that vaccinia virus infection could also inhibit Bax activity. Here we show that F1L inhibits the activity of the pro-apoptotic protein Bax by inhibiting oligomerization and N-terminal activation of Bax. F1L expression also inhibited the subcellular redistribution of Bax to the mitochondria and the insertion of Bax into the outer mitochondrial membrane. The ability of F1L to inhibit Bax activation does not require Bak, because F1L expression inhibited cytochrome c release and Bax activation in Bak-deficient cells. No interaction between Bax and F1L was detected during infection, suggesting that F1L functions upstream of Bax activation. Notably, F1L was capable of interacting with the BH3-only protein BimL as shown by co-immunoprecipitation, and F1L expression inhibited apoptosis induced by BimL. These studies suggest that, in addition to interacting with the pro-apoptotic protein Bak, F1L also functions to indirectly inhibit the activation of Bax, likely by interfering with the pro-apoptotic activity of BH3-only proteins such as BimL.  相似文献   

11.
Mitochondrial outer membrane permeabilization (MOMP) and release of mitochondrial intermembrane proteins like cytochrome c are critical steps in the control of apoptosis. Previous work has shown that MOMP depends on the functionally redundant multidomain proapoptotic proteins, Bak and Bax. Here we demonstrate that Bak and Bax are functionally non-redundant during Neisseria gonorrhoeae (Ngo)- and cisplatin-induced apoptosis. While the activation of Bak is caspase independent Bax activation needs Bak and active caspases. Silencing of either Bak or Bax resists both Ngo- and cisplatin- but not TNFalpha-induced apoptosis. Activation of Bak is required to release cytochrome c from the mitochondria; however, Bax is still required to activate effector caspases. Thus, both Bak and Bax are necessary to accomplish DNA damage and Ngo-induced apoptosis.  相似文献   

12.
13.
In the present study a clonal Jurkat cell line deficient in expression of Bak was used to analyze the role of Bak in cytochrome c release from mitochondria. The Bak-deficient T leukemic cells were resistant to apoptosis induced by UV, staurosporin, VP-16, bleomycin, or cisplatin. In contrast to wild type Jurkat cells, these Bak-deficient cells did not respond to UV or treatment with these anticancer drugs by membranous phosphatidylserine exposure, DNA breaks, activation of caspases, or release of mitochondrial cytochrome c. The block in the apoptotic cascade was in the mitochondrial mechanism for cytochrome c release because purified mitochondria from Bak-deficient cells failed to release cytochrome c or apoptosis-inducing factor in response to recombinant Bax or truncated Bid. The resistance of Bak-deficient cells to VP-16 was reversed by transduction of the Bak gene into these cells. Also, the cytochrome c releasing capability of the Bak-deficient mitochondria was restored by insertion of recombinant Bak protein into purified mitochondria. Following mitochondrial localization, low dose recombinant Bak restored the mitochondrial release of cytochrome c in response to Bax; at increased doses it induced cytochrome c release itself. The function of Bak is independent of Bid and Bax because recombinant Bak induced cytochrome c release from mitochondria purified from Bax(-/-), Bid(-/-), or Bid(-/-) Bax(-/-) mice. Together, our findings suggest that Bak plays a key role in the apoptotic machinery of cytochrome c release and thus in the chemoresistance of human T leukemic cells.  相似文献   

14.
Zinc has been known for many years to inhibit apoptosis but the mechanism remains unclear. Originally thought to inhibit an apoptotic endonuclease, zinc has subsequently been shown to inhibit steps earlier in the pathway. Since many additional steps in apoptosis have now been defined, we have re-evaluated the steps inhibited by zinc. In response to activation of the chemical-mediated death pathway by anisomycin, 0.3 mM zinc inhibited Bax and Bak activation, cytochrome c release, and all of the subsequent steps in apoptosis. In the receptor-mediated death pathway initiated by Fas or tumor necrosis factor, 3 mM zinc was required to inhibit apoptosis as judged by inhibition of caspase 3 activity and DNA digestion, but it failed to inhibit cytochrome c release, activation of Bax and Bak, or upstream signaling events in this pathway. These results are consistent with zinc selectively inhibiting activation of BH3-only proteins required in the chemical pathway but inhibiting downstream caspase activation in the death-receptor pathway.  相似文献   

15.
Mammalian orthoreoviruses induce apoptosis in vivo and in vitro; however, the specific mechanism by which apoptosis is induced is not fully understood. Recent studies have indicated that the reovirus outer capsid protein μ1 is the primary determinant of reovirus-induced apoptosis. Ectopically expressed μ1 induces apoptosis and localizes to intracellular membranes. Here we report that ectopic expression of μ1 activated both the extrinsic and intrinsic apoptotic pathways with activation of initiator caspases-8 and -9 and downstream effector caspase-3. Activation of both pathways was required for μ1-induced apoptosis, as specific inhibition of either caspase-8 or caspase-9 abolished downstream effector caspase-3 activation. Similar to reovirus infection, ectopic expression of μ1 caused release into the cytosol of cytochrome c and smac/DIABLO from the mitochondrial intermembrane space. Pancaspase inhibitors did not prevent cytochrome c release from cells expressing μ1, indicating that caspases were not required. Additionally, μ1- or reovirus-induced release of cytochrome c occurred efficiently in Bax(-/-)Bak(-/-) mouse embryonic fibroblasts (MEFs). Finally, we found that reovirus-induced apoptosis occurred in Bax(-/-)Bak(-/-) MEFs, indicating that reovirus-induced apoptosis occurs independently of the proapoptotic Bcl-2 family members Bax and Bak.  相似文献   

16.
Tumor necrosis factor-alpha (TNFalpha) mediates cytochrome c release from mitochondria, loss of mitochondrial membrane potential (DeltaPsim) and apoptosis in sensitive leukemic cells. In the present study, by using the human leukemic U937 cell line, we demonstrate that the cytochrome c release is caspase-8-dependent and can be blocked by an inhibitor of caspase-8, Z-Ile-Glu (OMe)-Thr-Asp(OMe)-fluoromethyl ketone (Z-IETD.fmk), or a pan caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD.fmk). However, TNFalpha-mediated loss of DeltaPsim was not inhibited by caspase inhibitors. The apoptotic process was blocked by either Z-IETD.fmk or Z-VAD.fmk in cells with lower DeltaPsim. U937 cells with stable transfection of the cellular inhibitor of apoptosis protein 1 (c-IAP1) are resistant to TNFalpha-induced activation of caspases, Bid cleavage, cytochrome c release and DeltaPsim collapse. In addition, both c-IAP1 and XIAP were not up-regulated upon prolonged exposure to TNFalpha. In contrast, there was a caspase-dependent cleavage of XIAP, but not c-IAP1, during treatment with TNFalpha for 7 days. These results demonstrate that c-IAP1 blocks TNFalpha signaling at a level controlling both activation of caspase-8 and a signal to cause loss of DeltaPsim. The sensitive U937 cell line failed to acquire resistance and gain a self-protecting advantage against apoptosis, upon induction of c-IAP1 expression.  相似文献   

17.
Bax and Bak are pro-apoptotic factors that are required for cell death by the mitochondrial or intrinsic pathway. Bax is found in an inactive state in the cytosol and upon activation is targeted to the mitochondrial outer membrane where it releases cytochrome c and other factors that cause caspase activation. Although Bak functions in the same way as Bax, it is constitutively localized to the mitochondrial outer membrane. In the membrane, Bak activation is inhibited by the voltage-dependent anion channel isoform 2 (VDAC2) by an unknown mechanism. Using blue native gel electrophoresis, we show that in healthy cells endogenous inactive Bak exists in a 400-kDa complex that is dependent on the presence of VDAC2. Activation of Bak is concomitant with its release from the 400-kDa complex and the formation of lower molecular weight species. Furthermore, substitution of the Bak transmembrane anchor with that of the mitochondrial outer membrane tail-anchored protein hFis1 prevents association of Bak with the VDAC2 complex and increases the sensitivity of cells to an apoptotic stimulus. Our results suggest that VDAC2 interacts with the hydrophobic tail of Bak to sequester it in an inactive state in the mitochondrial outer membrane, thereby raising the stimulation threshold necessary for permeabilization of the mitochondrial outer membrane and cell death.  相似文献   

18.
Treatment of human promyelocytic leukemia HL-60 cells with apigeninidin could induce cytotoxicity (IC50 = ~80 μM), along with apoptotic sub-G1 cells, TUNEL-positive apoptotic DNA fragmentation, activation of the multidomain pro-apoptotic Bcl-2 proteins (Bak and Bax), mitochondrial membrane potential (Δψm) loss, release of mitochondrial cytochrome c and AIF into the cytoplasm, activation of caspase-9, -3, -8, and -7, and cleavage of PARP and lamin B. These induced apoptotic events were accompanied by decrease of Bcl-2 level and increase of Bak and Bax levels. Apigeninidin-induced sub-G1 cells and activation of Bak and Bax were also detected in human acute leukemia Jurkat T cells, but not in Jurkat T cells overexpressing Bcl-2. Pretreatment of HL-60 cells with the pan-caspase inhibitor z-VAD-fmk reduced significantly apigeninidin-induced sub-G1 cells and caspase cascade activation, whereas it failed to suppress Bak and Bax activations, Δψm loss, and release of mitochondrial cytochrome c and AIF. None of FADD and caspase-8 deficiencies affected the sensitivity of Jurkat T cells to apigeninidin-induced cytotoxicity. These results demonstrated that apigeninidin-induced apoptosis was mediated by activation of Bak and Bax, mitochondrial damage and resultant release of not only cytochrome c, causing caspase cascade activation, but also caspase-independent death effector AIF in HL-60 cells.  相似文献   

19.
Sequential activation of caspases is critical for the execution of apoptosis. Recent evidence suggests caspase 2 is a significant upstream caspase capable of initiating mitochondrial events, such as the release of cytochrome c. In particular, in vitro studies using recombinant proteins have shown that cleaved caspase 2 can induce mitochondrial outer membrane permeabilization directly or by cleaving the BH3-only protein BID (BH3 interacting domain death agonist). However, whether interchain cleavage or activation of procaspase 2 occurs prior to Apaf-1-mediated procaspase 9 activation under more natural conditions remains unresolved. In the present study, we show that Apaf-1-deficient Jurkat T-lymphocytes and mouse embryonic fibroblasts were highly resistant to DNA-damage-induced apoptosis and failed to cleave or activate any apoptotic procaspase, including caspase 2. Significantly, drug-induced cytochrome c release and loss of mitochondrial membrane potential were inhibited in cells lacking Apaf-1. By comparison, procaspase proteolysis and apoptosis were only delayed slightly in Apaf-1-deficient Jurkat cells upon treatment with anti-Fas antibody. Our data support a model in which Apaf-1 is necessary for the cleavage or activation of all procaspases and the promotion of mitochondrial apoptotic events induced by genotoxic drugs.  相似文献   

20.
Caspase-2 is an initiating caspase required for stress-induced apoptosis in various human cancer cells. Recent studies suggest that it can mediate the death function of tumor suppressor p53 and is activated by a multimeric protein complex, PIDDosome. However, it is not clear how caspase-2 exerts its apoptotic function in cells and whether its enzymatic activity is required for the apoptotic function. In this study, we used both in vitro mitochondrial cytochrome c release assays and cell culture apoptosis analyses to investigate the mechanism by which caspase-2 induces apoptosis. We show that active caspase-2, but neither a catalytically mutated caspase-2 nor active caspase-2 with its inhibitor, can cause cytochrome c release. Caspase-2 failed to induce cytochrome c release from mitochondria with Bid(-/-) background, and the release could be restored by addition of the wild-type Bid protein, but not by Bid with the caspase-2 cleavage site mutated. Caspase-2 was not able to induce cytochrome c release from Bax(-/-)Bak(-/-) mitochondria either. In cultured cells, gene deletion of Bax/Bak or Bid abrogated apoptosis induced by overexpression of caspase-2. Collectively, these results indicate that proteolytic activation of Bid and the subsequent induction of the mitochondrial apoptotic pathway through Bax/Bak is essential for apoptosis triggered by caspase-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号