共查询到20条相似文献,搜索用时 15 毫秒
1.
The gastrulating vertebrate embryo develops three germlayers: ectoderm, mesoderm, and endoderm. Zebrafish endoderm differentiation starts with the activation of sox17 by casanova (cas). We report that spg (pou2/Oct4) is essential for endoderm formation. Embryos devoid of maternal and zygotic spg function (MZspg) lack endodermal precursors. Cell transplantations show that spg acts in early endodermal precursors, and cas mRNA-injection into MZspg embryos does not restore endoderm development. spg and cas together are both necessary and sufficient to activate endoderm development, and stimulate expression of a sox17 promoter-luciferase reporter. Endoderm and mesoderm derive from a common origin, mesendoderm. We propose that Spg and Cas commit mesendodermal precursors to an endodermal fate. The joint control of endoderm formation by spg and cas suggests that the endodermal germlayer may be a tissue unit with distinct genetic control, thus adding genetic support to the germlayer concept in metazoan development. 相似文献
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
We report the expression of zebrafish lmo4 during the first 48 h of development. Like its murine ortholog, lmo4 is expressed in somitic mesoderm, branchial arches, otic vesicles, and limb (pectoral fin) buds. In addition, however, we report zebrafish lmo4 expression in the developing eye, cardiovascular tissue, and the neural plate and telencephalon. We demonstrate that expression in the rostral hindbrain requires acerebellar (ace/fgf8) and spiel ohne grenzen (spg/pou2) activity. 相似文献
15.
16.
17.
Pou4f1 and Pou4f2 Are Dispensable for the Long-Term Survival of Adult Retinal Ganglion Cells in Mice
Liang Huang Fang Hu Xiaoling Xie Jeffery Harder Kimberly Fernandes Xiang-yun Zeng Richard Libby Lin Gan 《PloS one》2014,9(4)
Purpose
To investigate the role of Pou4f1 and Pou4f2 in the survival of adult retinal ganglion cells (RGCs).Methods
Conditional alleles of Pou4f1 and Pou4f2 were generated (Pou4f1loxP and Pou4f2loxP respectively) for the removal of Pou4f1 and Pou4f2 in adult retinas. A tamoxifen-inducible Cre was used to delete Pou4f1 and Pou4f2 in adult mice and retinal sections and flat mounts were subjected to immunohistochemistry to confirm the deletion of both alleles and to quantify the changes in the number of RGCs and other retinal neurons. To determine the effect of loss of Pou4f1 and Pou4f2 on RGC survival after axonal injury, controlled optic nerve crush (CONC) was performed and RGC death was assessed.Results
Pou4f1 and Pou4f2 were ablated two weeks after tamoxifen treatment. Retinal interneurons and Müller glial cells are not affected by the ablation of Pou4f1 or Pou4f2 or both. Although the deletion of both Pou4f1 and Pou4f2 slightly delays the death of RGCs at 3 days post-CONC in adult mice, it does not affect the cell death progress afterwards. Moreoever, deletion of Pou4f1 or Pou4f2 or both has no impact on the long-term viability of RGCs at up to 6 months post-tamoxifen treatment.Conclusion
Pou4f1 and Pou4f2 are involved in the acute response to damage to RGCs but are dispensable for the long-term survival of adult RGC in mice. 相似文献18.
19.
We report the expression of zebrafish lmo4 during the first 48 h of development. Like its murine ortholog, lmo4 is expressed in somitic mesoderm, branchial arches, otic vesicles, and limb (pectoral fin) buds. In addition, however, we report zebrafish lmo4 expression in the developing eye, cardiovascular tissue, and the neural plate and telencephalon. We demonstrate that expression in the rostral hindbrain requires acerebellar (ace/fgf8) and spiel ohne grenzen (spg/pou2) activity. 相似文献
20.
Hoxa2 and Hoxb2 control dorsoventral patterns of neuronal development in the rostral hindbrain 总被引:9,自引:0,他引:9
Little is known about how the generation of specific neuronal types at stereotypic positions within the hindbrain is linked to Hox gene-mediated patterning. Here, we show that during neurogenesis, Hox paralog group 2 genes control both anteroposterior (A-P) and dorsoventral (D-V) patterning. Hoxa2 and Hoxb2 differentially regulate, in a rhombomere-specific manner, the expression of several genes in broad D-V-restricted domains or narrower longitudinal columns of neuronal progenitors, immature neurons, and differentiating neuronal subtypes. Moreover, Hoxa2 and Hoxb2 can functionally synergize in controlling the development of ventral neuronal subtypes in rhombomere 3 (r3). Thus, in addition to their roles in A-P patterning, Hoxa2 and Hoxb2 have distinct and restricted functions along the D-V axis during neurogenesis, providing insights into how neuronal fates are assigned at stereotypic positions within the hindbrain. 相似文献