首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study we investigated whether serotonin release in the hippocampus is subject to regulation via cannabinoid receptors. Both rat and mouse hippocampal slices were preincubated with [3H]serotonin ([3H]5-HT) and superfused with medium containing serotonin reuptake inhibitor citalopram hydrobromide (300 nM). The cannabinoid receptor agonist R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate (WIN55,212-2, 1 microM) did not affect either the resting or the electrically evoked [3H]5-HT release. In the presence of the ionotropic glutamate receptor antagonists D(-)-2-amino-5-phosphonopentanoic acid (AP-5, 50 microM) and 6-cyano-7-nitroquinoxaline-2,3-dione-disodium (CNQX, 10 microM) the evoked [3H]5-HT release was decreased significantly. Similar findings were obtained when CNQX (10 microM) was applied alone with WIN55,212-2. This effect was abolished by the selective cannabinoid receptor subtype 1 (CB1) antagonists N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716, 1 microM) and 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide trifluoroacetate salt (AM251, 1 microM). Similarly to that observed in rats, WIN55,212-2 (1 microM) decreased the evoked [3H]5-HT efflux in wild-type mice (CB1+/+). The inhibitory effect of WIN55,212-2 (1 microM) was completely absent in hippocampal slices derived from mice genetically deficient in CB1 cannabinoid receptors (CB1-/-). Relatively selective degeneration of fine serotonergic axons by the neurotoxin parachloramphetamine (PCA) reduced significantly the tritium uptake and the evoked [3H]5-HT release. In addition, PCA, eliminated the effect of WIN55,212-2 (1 microM) on the stimulation-evoked [3H]5-HT efflux. In contrast to the PCA-treated animals, WIN55,212-2 (1 microM) reduced the [3H]5-HT efflux in the saline-treated group. Our data suggest that a subpopulation of non-synaptic serotonergic afferents express CB1 receptors and activation of these CB1 receptors leads to a decrease in 5-HT release.  相似文献   

2.
Cross-talk between cannabinoid CB1 and serotonin 5-HT receptors in rat cerebellar membranes was investigated using radioligand binding. In competition against the CB1 antagonist, [3 H]SR141716A, the agonist, WIN 55,212-2 yielded a biphasic isotherm. The majority of binding was to a high-affinity state that was significantly reduced by the GTP analogue, Gpp(NH)p. Interestingly, 5-HT enhanced the high-affinity binding constant of WIN 55,212-2 while attenuating the proportion of high-affinity binding. 5-HT also significantly reduced the proportion of high-affinity binding of the cannabinoid agonist, HU 210, but had no effect on the agonist, CP 55,940. The effect of 5-HT on WIN 55,212-2 binding was inhibited by the 5-HT2 receptor antagonist ritanserin as well as Gpp(NH)p, suggesting a dependence on the 5-HT2 receptor and on G protein-receptor interactions, respectively. Subsequent [3 H]WIN 55,212-2 dissociation kinetic experiments revealed that 5-HT promoted a slower-dissociating species of radiolabelled agonist-receptor complex. Our findings support a membrane-delimited cross-talk between two G protein-coupled receptors that are co-localized in certain cells of the central nervous system. Intriguingly, the cannabinoid agonist dependence of the 5-HT modulatory effect suggests that agonist-specific conformations of the CB1 receptor may also be important in determining the extent of this cross-talk.  相似文献   

3.
In this study we report data suggesting the presence of a non-CB1, non-CB2 cannabinoid site in the cerebellum of CB1-/- mice. We have carried out [(35)S]GTPgammaS binding experiments in striata, hippocampi, and cerebella of CB1-/- and CB1(+/+) mice with Delta(9)-THC, WIN55,212-2, HU-210, SR141716A, and SR144528. In CB1-/- mice Delta(9)-THC and HU-210 did not stimulate [(35)S]GTPgammaS binding. However, WIN55,212-2 was able to stimulate [(35)S]GTPgammaS binding in cerebella of CB1-/- mice. The maximal effect of this stimulation was 31% that of wild type animals. This effect was reversible neither by CB1 nor CB2 receptor antagonists. Similar results were obtained with the endogenous cannabinoid, anandamide. However, adenylyl cyclase was not inhibited by WIN55,212-2 or anandamide in the CB1(minus sign/minus sign) animals. In striata and hippocampi of CB1-/- mice no [(35)S]GTPgammaS stimulation curve could be obtained with WIN55,212. Our findings suggest that there is a non-CB1 non-CB2 receptor present in the cerebellum of CB1-/- mice.  相似文献   

4.
5.
Alcohol‐induced increases in nucleus accumbens glutamate actively regulate alcohol consumption, and the alcohol responsiveness of corticoaccumbens glutamate systems relates to genetic variance in alcohol reward. Here, we extend earlier data for inbred mouse strain differences in accumbens glutamate by examining for differences in basal and alcohol‐induced changes in the striatal expression of glutamate‐related signaling molecules between inbred C57BL/6J and DBA2/J mice. Repeated alcohol treatment (8 × 2 g/kg) increased the expression of Group1 metabotropic glutamate receptors, the NR2a/b subunits of the N‐methyl‐d ‐aspartate receptor, Homer2a/b, as well as the activated forms of protein kinase C (PKC) epsilon and phosphoinositol‐3‐kinase within ventral, but not dorsal, striatum. Regardless of prior alcohol experience, C57BL/6J mice exhibited higher accumbens levels of mGluR1/5, Homer2a/b, NR2a and activated kinases vs. DBA2/J mice, whereas an alcohol‐induced rise in dorsal striatum mGluR1/5 expression was observed only in C57BL/6J mice. We next employed virus‐mediated gene transfer approaches to ascertain the functional relevance of the observed strain difference in accumbens Homer2 expression for B6/D2 differences in alcohol‐induced glutamate sensitization, as well as alcohol preference/intake. Manipulating nucleus accumbens shell Homer2b expression actively regulated these measures in C57BL/6J mice, whereas DBA2/J mice were relatively insensitive to the neurochemical and behavioral effects of virus‐mediated changes in Homer2 expression. These data support the over‐arching hypothesis that augmented accumbens Homer2‐mediated glutamate signaling may be an endophenotype related to genetic variance in alcohol consumption. If relevant to humans, such data pose polymorphisms affecting glutamate receptor/Homer2 signaling in the etiology of alcoholism.  相似文献   

6.
Heterozygous CB1 receptor knockout mice were used to examine the effect of reduced CB1 receptor density on G-protein activation in membranes prepared from four brain regions: cerebellum, hippocampus, striatum/globus pallidus (striatum/GP) and cingulate cortex. Results showed that CB1 receptor levels were approximately 50% lower in heterozygous mice in all regions examined. However, maximal stimulation of [(35)S]guanosine-5'-(gamma-O-thio) triphosphate ([(35)S]GTPgammaS) binding by the high efficacy agonist WIN 55,212-2 was reduced by only 20-25% in most brain regions, with the exception of striatum/GP where the decrease in stimulation was as predicted (approximately 50%). Furthermore, although the efficacies of the cannabinoid partial agonists, methanandamide and (9)-tetrahydrocannabinol, were similarly lower in heterozygous mice, their relative efficacies compared with WIN 55,212-2 were generally unchanged. Saturation analysis of net WIN 55,212-2-stimulated [(35)S]GTPgammaS binding showed that decreased stimulation by WIN 55,212-2 in striatum/GP of heterozygous mice was caused by a decrease in the apparent affinity of net-stimulated [(35)S]GTPgammaS binding. The apparent maximal number of binding sites (B(max)) values of net WIN 55,212-2-stimulated [(35)S]GTPgammaS binding were unchanged in cerebellum and striatum/GP of heterozygous mice, but decreased in cingulate cortex, with a similar trend in hippocampus. Moreover, in every region except cingulate cortex, the maximal number of net-stimulated [(35)S]GTPgammaS binding sites per receptor was significantly increased in heterozygous mice. These results indicate region-dependent increases in the apparent efficiency of CB1 receptor-mediated G-protein activation in heterozygous CB1 knockout mice.  相似文献   

7.
We used the microdialysis technique to compare basal extracellular serotonin (5-HT) and the response to citalopram in different strains of mice with functionally different allelic forms of tryptophan hydroxylase-2 (TPH-2), the rate-limiting enzyme in brain 5-HT synthesis. DBA/2J, DBA/2N and BALB/c mice carrying the 1473G allele of TPH-2 had less dialysate 5-HT in the medial prefrontal cortex and dorsal hippocampus (DH) (20-40% reduction) than C57BL/6J and C57BL/6N mice carrying the 1473C allele. Extracellular 5-HT estimated by the zero-net flux method confirmed the result of conventional microdialysis. Citalopram, 1.25, 5 and 20 mg/kg, dose-dependently raised extracellular 5-HT in the medial prefrontal cortex of C57BL/6J mice, with maximum effect at 5 mg/kg, but had significantly less effect in DBA/2J and BALB/c mice and in the DH of DBA/2J mice. A tryptophan (TRP) load enhanced basal extracellular 5-HT in the medial prefrontal cortex of DBA/2J mice but did not affect citalopram's ability to raise cortical and hippocampal extracellular 5-HT. The impairment of 5-HT synthesis quite likely accounts for the reduction of basal 5-HT and the citalopram-induced rise in mice carrying the mutated enzyme. These findings might explain why DBA/2 and BALB/c mice do not respond to citalopram in the forced swimming test. Although TRP could be a useful strategy to improve the antidepressant effect of citalopram (Cervo et al. 2005), particularly in subjects with low 5-HT synthesis, the contribution of serotonergic and non-serotonergic mechanisms to TRP's effect remains to be elucidated.  相似文献   

8.
Both the serotonergic and endocannabinoid systems modulate frontocortical glutamate release; thus they are well positioned to participate in the pathogenesis of psychiatric disorders. With the help of fluorescent and confocal microscopy, we localized the CB(1) cannabinoid receptor (CB(1)R) in VGLUT1- and 2- (i.e. glutamatergic) and serotonin transporter- (i.e. serotonergic) -positive fibers and nerve terminals in the mouse and rat frontal cortex. CB(1)R activation by the synthetic agonists, WIN55212-2 (1 μM) and R-methanandamide (1 μM) inhibited the simultaneously measured evoked Ca(2+)-dependent release of [(14)C]glutamate and [(3)H]serotonin from frontocortical nerve terminals of Wistar rats, in a fashion sensitive to the CB(1)R antagonists, O-2050 (1 μM) and LY320135 (5 μM). CB(1)R agonists also inhibited the evoked release of [(14)C]glutamate in C57BL/6J mice in a reversible fashion upon washout. Interestingly, the evoked release of [(14)C]glutamate and [(3)H]serotonin was significantly greater in the CB(1)R knockout CD-1 mice. Furthermore, CB(1)R binding experiments revealed similar frontocortical CB(1)R density in the rat and the CD-1 mouse. Still, the evoked release of [(3)H]serotonin was modulated by neither CB(1)R agonists nor antagonists in wild-type CD-1 or C57BL/6J mice. Altogether, this is the first study to demonstrate functional presynaptic CB(1)Rs in frontocortical glutamatergic and serotonergic terminals, revealing species differences.  相似文献   

9.
Exogenous and endogenous cannabinoids play an important role in modulating the release of neurotransmitters in hippocampal excitatory and inhibitory networks, thus having profound effect on higher cognitive and emotional functions such as learning and memory. In this study we have studied the effect of cannabinoid agonists on the potassium depolarization-evoked [(3)H]GABA release from hippocampal synaptosomes in the wild-type (WT) and cannabinoid 1 receptor (CB(1)R)-null mutant mice. All tested cannabinoid agonists (WIN55,212-2, CP55,940, HU-210, 2-arachidonoyl-glycerol, 2-AG; delta-9-tetra-hydrocannabinol, THC) inhibited [(3)H]GABA release in WT mice with the following rank order of agonist potency: HU-210>CP55,490>WIN55,212-2>2-AG>THC. By contrast, 2-AG and THC displayed the greatest efficacy eliciting almost complete inhibition of evoked [(3)H]GABA efflux, whereas the maximal inhibition obtained by HU-210, CP55,490, and WIN55,212-2 were less, eliciting not more than 40% inhibition. The inhibitory effect of WIN55,212-2, THC and 2-AG on evoked [(3)H]GABA efflux was antagonized by the CB(1) receptor inverse agonist AM251 (0.5 μM) in the WT mice. In the CB(1)R knockout mice the inhibitory effects of all three agonists were attenuated. In these mice, AM251 did not antagonize, but further reduced the [(3)H]GABA release in the presence of the synthetic agonist WIN55,212-2. By contrast, the concentration-dependent inhibitory effects of THC and 2-AG were partially antagonized by AM251 in the absence of CB(1) receptors. Finally, the inhibition of evoked [(3)H]GABA efflux by THC and 2-AG was also partially attenuated by AM630 (1 μM), the CB(2) receptor-selective antagonist, both in WT and CB(1) knockout mice. Our data prove the involvement of CB(1) receptors in the effect of exo- and endocannabinoids on GABA efflux from hippocampal nerve terminals. In addition, in the effect of the exocannabinoid THC and the endocannabinoid 2-AG, non-CB(1), probably CB(2)-like receptors are also involved.  相似文献   

10.
The anticonvulsant activities of cannabinoid compounds have been shown in various models of seizure and epilepsy. At least, part of antiseizure effects of cannabinoid compounds is mediated through calcium (Ca2+) channels. The L-type Ca2+ channels have been shown to be important in various epilepsy models. However, there is no data regarding the role of L-type Ca2+ channels in protective action of cannabinoids on acute and chronic models of seizure. In this study, the effects of cannabinoid compounds and L-type Ca2+ channels blockers, either alone or in combination were investigated using acute model of pentylenetetrazole (PTZ)-induced seizure in mice and chronic model electrical kindling of amygdala in rats. Pretreatment of mice with both cannabinoid CB1 receptor agonist arachidonyl-2′-chloroethylamide (ACEA) and endocannabinoid degradating enzyme inhibitor cyclohexylcarbamic acid 3′-carbamoyl-biphenyl-3-yl ester (URB597) produced a protective effect against PTZ-induced seizure. Administration of various doses of the two L-type Ca2+ channel blockers verapamil and diltiazem did not alter PTZ-induced seizure threshold. However, co-administration of verapamil and either ACEA or URB597 attenuated the protective effect of cannabinoid compounds against PTZ-induced seizure. Also, pretreatment of mice with diltiazem blocked the anticonvulsant activity of both ACEA and URB597. Moreover, (R)-(+)-[2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate (WIN55,212-2), the non-selective cannabinoid CB1 and CB2 receptor agonist showed anticonvulsant effect in amygdala-kindled rats. However, co-administration of WIN55,212-2 and verapamil attenuated the protective properties of WIN55,212-2. Our results showed that the anticonvulsant activity of cannabinoid compounds is mediated, at least in part, by L-type Ca2+ channels in these two models of convulsion and epilepsy.  相似文献   

11.
Cannabinoid drugs are known to affect dopaminergic neurotransmission in the basal ganglia circuitry. In this study, we used in vitro and in vivo techniques to investigate whether cannabinoid agonists and antagonist could affect dopaminergic transmission in the striatum by acting at the dopamine transporter. Incubation of striatal synaptosomes with the cannabinoid agonists WIN55,212-2 or methanandamide decreased dopamine uptake (IC(50) = 2.0 micromol/L and 3.1 micromol/L, respectively). A similar inhibitory effect was observed after application of the inactive WIN55,212-2 isomer, S(-)WIN55,212-3. The CB(1) antagonist AM251 did not reverse WIN55,212-2 effect but rather mimicked it. WIN55,212-2 and AM251 partially displaced the binding of the cocaine analog [(3)H]WIN35,428, thus acting as dopamine transporter pseudo-substrates in the high micromolar range. High-speed chronoamperometry measurements showed that WIN55,212-2 (4 mg/kg, i.p.) caused significant release of endogenous dopamine via activation of CB(1) receptors, followed by a reduction of dopamine clearance. This reduction was CB(1)-independent, as it was mimicked by S(-)WIN55,212-3. Administration of AM251 (1 and 4 mg/kg, i.p.) increased the signal amplitude and reduced the clearance of dopamine pressure ejected into the striatum. These results indicate that both cannabinoid agonists and antagonists inhibit dopamine transporter activity via molecular targets other than CB(1) receptors.  相似文献   

12.
Involvement of cannabinoid CB2 receptors in the IgE-mediated cutaneous reaction was investigated. Epicutaneous challenge with 2,4-dinitrofluorobenzene caused a triphasic swelling in the ear of BALB/c and C57BL/6 mice passively sensitized with anti-dinitrophenol IgE. Peak responses of the ear swelling appeared at 1 h, 24 h, and 8 days after the challenge in both strains of mice. In contrast, cannabinoid CB2 receptor-deficient mice failed to exhibit the obvious triphasic ear swelling observed in wild-type mice. Oral administration of cannabinoid CB2 receptor antagonist/inverse agonists [N-(benzo[1,3]dioxol-5-ylmethyl)-7-methoxy-2-oxo-8-pentyloxy-1,2-dihydroquinoline-3-carboxamide] (JTE-907) and {N-[(1S)-endo-1,3,3-trimethylbicyclo[2,2,1]heptan-2yl]5-(4-chloro-3-methyl-phenyl)-1-(4-methylbenzyl)pyrazole-3-carboxamide} (SR144528) at doses of 0.1-10 mg/kg significantly and dose-dependently suppressed all three phases of ear swelling in BALB/c mice. Interestingly, epicutaneous treatment with an ether-linked analogue of endogenous cannabinoids, 2-arachidonoylglycerol, caused an ear swelling that could be detected at 1 h, 24 h, and 8 days after treatment of both BALB/c and C57BL/6 mice. These results suggest that cannabinoid CB2 receptors are involved in induction of the triphasic cutaneous reaction mediated by IgE, and that cannabinoid CB2 receptor antagonist/inverse agonists may serve as anti-allergic agents in the treatment of allergic dermatitis.  相似文献   

13.
Agonist-induced internalization of G protein-coupled receptors (GPCRs) is an important mechanism for regulating signaling transduction of functional receptors at the plasma membrane. We demonstrate here that both caveolae/lipid-rafts- and clathrin-coated-pits-mediated pathways were involved in agonist-induced endocytosis of the cannabinoid type 1 receptor (CB1R) in stably transfected human embryonic kidney (HEK) 293 cells and that the internalized receptors were predominantly sorted into recycling pathway for reactivation. The treatment of CB1 receptors with the low endocytotic agonist Δ9-THC induced a faster receptor desensitization and slower resensitization than the high endocytotic agonist WIN 55,212-2. In addition, the blockade of receptor endocytosis or recycling pathway markedly enhanced agonist-induced CB1 receptor desensitization. Furthermore, co-expression of phospholipase D2, an enhancer of receptor endocytosis, reduced CB1 receptor desensitization, whereas co-expression of a phospholipase D2 negative mutant significantly increased the desensitization after WIN 55,212-2 treatment. These findings provide evidences for the importance of receptor endocytosis in counteracting CB1 receptor desensitization by facilitating receptor reactivation. Moreover, in primary cultured neurons, the low endocytotic agonist Δ9-THC or anandamide exhibited a greater desensitization of endogenous CB1 receptors than the high endocytotic agonist WIN 55,212-2, CP 55940 or 2-arachidonoyl glycerol, indicating that cannabinoids with high endocytotic efficacy might cause reduced development of cannabinoid tolerance to some kind cannabinoid-mediated effects.  相似文献   

14.
Variations in maternal behavior, either occurring naturally or in response to experimental manipulations, have been shown to exert long-lasting consequences on offspring behavior and physiology. Despite previous research examining the effects of developmental manipulations on drug-related phenotypes, few studies have specifically investigated the influence of strain-based differences in maternal behavior on drug responses in mice. The current experiments used reciprocal F1 hybrids of two inbred mouse strains (i.e. DBA/2J and C57BL/6J) that differ in both ethanol (EtOH) responses and maternal behavior to assess the effects of maternal environment on EtOH-related phenotypes. Male and female DBA/2J and C57BL/6J mice and their reciprocal F1 hybrids reared by either DBA/2J or C57BL/6J dams were tested in adulthood for EtOH intake (choice, forced), EtOH-induced hypothermia, EtOH-induced activity and EtOH-induced conditioned place preference (CPP). C57BL/6J and DBA/2J mice showed differences on all EtOH responses. Consistent with previous reports that maternal strain can influence EtOH intake, F1 hybrids reared by C57BL/6J dams consumed more EtOH during forced exposure than did F1 hybrids reared by DBA/2J dams. Maternal strain also influenced EtOH-induced hypothermic responses in F1 hybrids, producing differences in hybrid mice that paralleled those of the inbred strains. In contrast, maternal strain did not influence EtOH-induced activity or CPP in hybrid mice. The current findings indicate that maternal environment may contribute to variance in EtOH-induced hypothermia and EtOH intake, although effects on EtOH intake appear to be dependent upon the type of EtOH exposure.  相似文献   

15.
The endocannabinoids have been recognized as an important system involved in the regulation of energy balance. Rimonabant (SR141716), a selective inverse agonist of cannabinoid receptor 1 (CB1), has been shown to cause weight loss. However, its suppressive impact on food intake is transient, indicating a likely additional effect on energy expenditure. To examine the effects of rimonabant on components of energy balance, we administered rimonabant or its vehicle to diet-induced obese (DIO) C57BL/6 mice once daily for 30 days, by oral gavage. Rimonabant induced a persistent weight reduction and a significant decrease in body fatness across all depots. In addition to transiently reduced food intake, rimonabant-treated mice exhibited decreased apparent energy absorption efficiency (AEAE), reduced metabolizable energy intake (MEI), and increased daily energy expenditure (DEE) on days 4-6 of treatment. However, these effects on the energy budget had disappeared by days 22-24 of treatment. No chronic group differences in resting metabolic rate (RMR) or respiratory quotient (RQ) (P > 0.05) were detected. Rimonabant treatment significantly increased daily physical activity (PA) levels both acutely and chronically. The increase in PA was attributed to elevated activity during the light phase but not during the dark phase. Taken together, these data suggested that rimonabant caused a negative energy balance by acting on both energy intake and expenditure. In the short term, the effect included both reduced intake and elevated PA but the chronic effect was only on increased PA expenditure.  相似文献   

16.
BTBR mice are potentially useful tools for autism research because their behavior parallels core social interaction impairments and restricted-repetitive behaviors. Altered regulation of central serotonin (5-HT) neurotransmission may underlie such behavioral deficits. To test this, we compared 5-HT transporter (SERT), 5-HT(1A) and 5-HT(2A) receptor densities among BTBR and C57 strains. Autoradiographic [(3) H] cyanoimipramine (1 nM) binding to SERT was 20-30% lower throughout the adult BTBR brain as compared to C57BL/10J mice. In hippocampal membrane homogenates, [(3) H] citalopram maximal binding (B(max) ) to SERT was 95 ± 13 fmol/mg protein in BTBR and 171 ± 20 fmol/mg protein in C57BL/6J mice, and the BTBR dissociation constant (K(D) ) was 2.0 ± 0.3 nM versus 1.1 ± 0.2 in C57BL/6J mice. Hippocampal 5-HT(1A) and 5-HT(2A) receptor binding was similar among strains. However, 8-OH-DPAT-stimulated [(35) S] GTPγS binding in the BTBR hippocampal CA(1) region was 28% higher, indicating elevated 5-HT(1A) capacity to activate G-proteins. In BTBR mice, the SERT blocker, fluoxetine (10 mg/kg) and the 5-HT(1A) receptor partial-agonist, buspirone (2 mg/kg) enhanced social interactions. The D(2) /5-HT(2) receptor antagonist, risperidone (0.1 mg/kg) reduced marble burying, but failed to improve sociability. Overall, altered SERT and/or 5-HT(1A) functionality in hippocampus could contribute to the relatively low sociability of BTBR mice.  相似文献   

17.
We have previously reported that airway hyperresponsiveness to acetylcholine (ACh) is inherited as an autosomal recessive trait in A/J and C3H/HeJ mice and the progeny of crosses between them (FASEB J. 2: 2605-2608, 1988). In the present report, we have extended these studies by evaluating the biological variability in the airway response to 5-hydroxytryptamine (5-HT) and ACh among multiple genetically standardized inbred strains of mice. The pattern of airway responsiveness to ACh differed significantly from that of 5-HT in nine inbred strains of mice. A/J mice showed nonspecific airway hyperresponsiveness to both 5-HT and ACh. DBA/2J mice were hyperresponsive to 5-HT but not to ACh. An airway phenotype that resembled these inbred strains is termed HYPERREACTIVE. The C3H/HeJ and C57BL/6J inbred strains were minimally reactive to either ACh or 5-HT. Airway phenotypes that resembled these minimally reactive strains are termed HYPOREACTIVE. The frequency of HYPERRACTIVE and HYPOREACTIVE offspring from crosses between A/J and C3H/HeJ mice or DBA/2J and C57BL/6J mice is consistent with a single autosomal recessive gene, primarily determining airway hyperresponsiveness to 5-HT. We report linkage studies which suggest that these genes are not closely linked and that 5-HT and ACh airway hyperresponsiveness is inherited independently. The results of these studies suggest that murine nonspecific airway hyperresponsiveness is determined by multiple genes.  相似文献   

18.
Local acidosis has been found in various pain-generating conditions such as inflammation and tissue injury. Cannabinoids exert a powerful inhibitory control over pain initiation via peripheral cognate receptors. However, the peripheral molecular targets responsible for the antinociceptive effects of cannabinoids are still poorly understood. Here, we have found that WIN55,212-2, a cannabinoid receptor agonist, inhibits the activity of native acid-sensing ion channels (ASICs) in rat dorsal root ganglion (DRG) neurons. WIN55,212-2 dose-dependently inhibited proton-gated currents mediated by ASICs. WIN55,212-2 shifted the proton concentration–response curve downwards, with an decrease of 48.6±3.7% in the maximum current response but with no significant change in the EC50 value. The inhibition of proton-gated current induced by WIN55,212-2 was almost completely blocked by the selective CB1 receptor antagonist AM 281, but not by the CB2 receptor antagonist AM630. Pretreatment of forskolin, an AC activator, and the addition of cAMP also reversed the inhibition of WIN55,212-2. Moreover, WIN55,212-2 altered acid-evoked excitability of rat DRG neurons and decreased the number of action potentials induced by acid stimuli. Finally, WIN55,212-2 attenuated nociceptive responses to injection of acetic acid in rats. These results suggest that WIN55,212-2 inhibits the activity of ASICs via CB1 receptor and cAMP dependent pathway in rat primary sensory neurons. Thus, cannabinoids can exert their analgesic action by interaction with ASICs in the primary afferent neurons, which was novel analgesic mechanism of cannabinoids.  相似文献   

19.
20.
1. Endrin is a polyhalogenated cyclic hydrocarbon which produces hepatic and neurologic toxicity. In order to further assess the mechanism of toxicity ofendrin, the dose-dependent effects of endrin on hepatic lipid peroxidation and DNA damage, and nitric oxide (NO) production by peritoneal exudate cells (primarily macrophages) were investigated in C57BL/6J and DBA/2 mice which vary at the Ah receptor genetic locus. C57BL/6J mice are dioxin-responsive, while DBA/2 mice are dioxin-insensitive.2. Mice of both strains were treated with 0, 1, 2 or 4 mg endrin kg−1 as a single oral dose in corn oil, and the animals were killed 24 hr post-treatment. At doses of 1,2 and 4 mg endrin kg−1 in C57BL/6J mice, hepatic mitochondrial lipid peroxidation increased 1.2-, 2.2- and 3.2-fold, respectively, and 1.8-, 2.3- and 3.5-fold with microsomes, respectively. At these same doses in DBA/2 mice, hepatic mitochondrial lipid peroxidation increased 1.3-, 2.0- and 2.6-fold, respectively, and 1.5-, 1.9- and 2.5-fold with microsomes, respectively.3. Increases of 2.3-, 2.4- and 4.9-fold were observed in hepatic DNA damage (elution constants) in C57BL/6J mice at doses of 1, 2 and 4 mg endrin kg−1, respectively, while at these same three doses, increases of 1.9-, 2.1- and 2.3-fold were observed for DBA/2 mice, respectively.4. Nitric oxide production by peritoneal macrophages from C57BL/6J increased by 1.3-, 1.7- and 2.0-fold with doses of 1, 2 and 4 mg endrin kg−1, respectively, while in macrophages from DBA/2 mice at these same doses, increases of 1.7-, 1.7- and 1.8-fold, respectively, were observed.5. The results indicate that the responsiveness of peritoneal macrophages with respect to both DNA damage and nitric oxide production are more dose-dependent in C57BL/6J mice as compared to DBA/2 mice, while similar results are observed with the lipid peroxidation of hepatic mitochondria and microsomes of the two mouse strains. The results suggest that the toxicity of endrin is less reliant on a mechanism which may involve the Ah receptor system as compared to dioxins as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号