首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In ectothermic species, females often produce larger eggs in colder environments. Models based on energetic constraints suggest that this pattern is an adaptation to compensate for the slower growth of offspring in the cold. Yet, females in cold environments also tend to be larger than females in warm environments. Consequently, thermal clines in egg size could be caused by pelvic constraints, which stem from the inability of large eggs to pass through a small pelvic aperture. Models based on energetic constraints and models based on pelvic constraints predict similar relationships between maternal size and egg size. However, pelvic constraints should produce these relationships both within and among populations, whereas energetic constraints would not necessarily do so. If pelvic constraints are important, we might also expect small females to compensate by producing eggs that are relatively rich in lipids (i.e. high energy density). The present study aimed to assess whether energetic or pelvic constraints generate geographical variation in egg size of the lizard Sceloporus undulatus . Pelvic width is very highly correlated with body length in S. undulatus , making maternal size a suitable measure of pelvic constraint. Although maternal size and egg mass (dry and wet) covaried among populations, these variables were generally not related within populations. Energetic density of eggs tended to increase with decreasing egg mass (dry and wet), but this relationship was strongest in populations where no relationship between maternal size and egg mass was observed. Our results do not support the pelvic constraint model and thus indicate energetic constraints play a greater role in generating geographical variation in egg size.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 513–521.  相似文献   

2.
De Block M  Stoks R 《Oecologia》2004,140(1):68-75
Although variation within populations in plasticity to time constraints is expected with regard to hatching date, empirical studies are largely lacking. We studied life-history responses to time constraints manipulated by photoperiod and associated with hatching date in larvae of the damselfly Lestes viridis for two populations with a different hydroperiod. In a common garden experiment, early- and late-hatched larvae from both populations were reared at two photoperiods mimicking the start and the end of the egg-hatching season. In a reciprocal transplant experiment, early- and late-hatched larvae from both populations were reared in both ponds. In all these experiments, larvae were reared from egg hatching until adult emergence. Within both populations, larvae reared at the photoperiod indicating a late time point in the growing season, reduced development time to compensate for their perceived shorter development period. Growth rate, however, did not respond to photoperiod, resulting in a lower mass at emergence. As expected, both in the laboratory and in the field, larvae from eggs that hatched later in the season generally had a shorter development time and a faster growth rate, resulting in a higher mass at emergence compared to early-hatched larvae. This may explain the intriguing seasonal increase in mass at emergence in this species, and affect the predictions of optimality models. None of these life-history responses differed between the two populations, despite clear differences in time constraints linked to hydroperiod, suggesting the robustness of the observed patterns. Given the ubiquity of asynchronous hatching in nature, and the adaptive value of the observed differences between early- and late-hatched larvae, we expect the effects of hatching date on life-history plasticity to be widespread.  相似文献   

3.
Body size in proboscideans, with notes on elephant metabolism   总被引:4,自引:0,他引:4  
Mass estimates for a number of fossil proboscideans were computed using regression analyses on appendicular bones to body mass, for seven specimens of modern elephants, for which body masses had been recorded prior to death. The marked differences in physical proportions between extant Loxodonta and Elephas , implying substantial differences in body mass at any given shoulder height, were not present in their long bone parameters. Length and least circumferences proved to be the best parameters for prediction of body mass. Some extinct proboscideans, notably certain Mammuthus and Deinotherium , were much larger than extant elephants. Both the basal and the field metabolic rates of extant elephants are lower than predicted for a hypothetical mammal, in accordance with their body size and subsistence on low-quality foods. The feeding quantities often ascribed to extant wild elephants are exaggerated, and would in fact have sufficed to nourish much larger species.  © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society , 2004, 140 , 523–549.  相似文献   

4.
Life history responses depend on timing of cannibalism in a damselfly   总被引:1,自引:0,他引:1  
1. Cannibalism has often been suggested as an important mechanism to reach the necessary developmental stage and size before a critical time horizon is reached, but this role has been largely unexplored. We studied effects of cannibalism on the life history of the damselfly Lestes viridis under combinations of a time constraint (by manipulating the perceived time available in the growth season) and a biotic constraint (density). 2. Larvae had a faster development and growth rate when reared at high time stress (late photoperiod). They also had a higher growth rate and mass at emergence when cannibalism occurred (density 2 and 4). Cannibalism occurred earlier at higher density. Accelerated life history responses (faster development and growth rate) and a higher mass at emergence were dependent upon the timing of cannibalism. Responses were more pronounced or only present if cannibalism occurred early in the larval period. 3. Our data suggest that cannibalism may not only act as a lifeboat mechanism by enabling cannibals to survive detrimental ecological conditions, but may also act as a compensatory mechanism to keep life history variables near‐optimal at life history transitions, even under sub‐optimal conditions.  相似文献   

5.
Several trends were found in comparisons of rates of growth and development of larvae of four coral-reef damselfishes ( Chromis atripectoralis, Pomacentrus amboinensis, Premnas biaculeatus, Acanthochromis polyacanthus ), which were reared under constant temperature conditions in the laboratory, and which varied in their early life stage durations (respectively, egg stage durations were 2, 4, 7, 16; larval stage durations were 25, 23, 14, 0). Parameters measured included standard length, muscle area, eye diameter, and selected stages of retinal development, olfactory development, and skeletal ossification. Rates of ossification and olfactory development were inversely related to growth rate (in length and muscle area) among most species. Rates of eye growth and retinal development were also negatively correlated among all species. These results are consistent with the concept of a trade-off between growth and development. We observed a positive relationship between egg stage duration and developmental rate, and a negative correlation between larval stage duration and developmental rate. Acanthochromis developed slower than predicted by the general trends, although retinal development was very rapid. Specific retinal stages correlated with settlement, regardless of ontogenetic rates. Olfactory development was especially rapid in the anemonefish Premnas biaculeatus , which imprints to olfactory cues as an embryo. Skeletal ossification was rapid in species with pelagic larvae, and much slower in the benthic brooder. Literature-derived data on size and age at hatching and settlement from > 40 species of tropical pomacentrids were transformed into growth and developmental rates; correlations of these literature-derived parameters were mostly consistent with our controlled four-species comparison.  © 2003 The Linnean Society of London, The Biological Journal of the Linnean Society , 2003, 80 , 187−206.  相似文献   

6.
The thermal environment during development influences many aspects of the phenotype of hatchling reptiles. We hypothesized that temperature should differentially affect early incubation stages, in which differentiation dominates over growth, and late incubation stages, characterized by high growth rates. To test this idea, we incubated eggs of wall lizard ( Podarcis muralis ) under three regimes with the same mean temperature (29 °C), one constant and two variable with opposite sequences: first cold (25 °C) and then hot (32 °C), and vice versa. Hatchlings incubated at high temperature during the initial period had shorter hindlimbs and tails than those incubated under the other two temperature regimes and shorter heads than those incubated initially at low temperature. Thus, temperature experienced by embryos during the early external incubation period produced similar phenotypic responses compared to those reported in previous studies for the same constant temperature applied over the whole incubation period. Because female wall lizards select lower body temperatures during pregnancy, an increase of intrauterine retention would extend the time of exposure of developing embryos to suitable temperatures. Diminution of body temperature during pregnancy is contrary to the expected pattern under the hypothesis that egg retention has evolved to accelerate development, as proposed by the cold-climate model for evolution of viviparity in squamates, and the results of the present study support the alternative hypothesis of developmental optimization as a special case of the broader maternal manipulation view.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 441–447.  相似文献   

7.
Bat genitalia: allometry, variation and good genes   总被引:5,自引:0,他引:5  
Male genitalia are typically highly variable across species, for which sexual selection is thought to be responsible. Sexually selected traits characteristically show positive allometry and high phenotypic variation, although genitalia seem to be typified by negative allometry due to stabilizing selection. Additionally, while sexual selection appears to be the primary force responsible for genital evolution, the precise mechanism is unclear, but good-genes selection could be involved. If so, male genital variation should correlate with some male quality measure(s). We investigated the allometry of male Nyctalus noctula genitalia and investigated associations between genital size and three phenotypic measures of male quality (body size, relative body mass, and fluctuating asymmetry (FA)). We found that the penis exhibited positive allometry and high phenotypic variation, and was positively associated with male body size and relative body mass, but not with FA. This pattern is more typical of sexually selected display traits, contrasting with general patterns of genital allometry. The baculum was negatively allometric and was not associated with any quality measure. Our results suggest that the N. noctula penis is under directional sexual selection and is a reliable indicator of male phenotypic quality.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 497–507.  相似文献   

8.
A common-garden experiment was conducted on larvae to test for genetic differences in body shape among populations of Atlantic cod ( Gadus morhua ). Offspring from four north-west Atlantic regions were reared from hatching to postmetamorphosis at two temperatures (7 ± 1 °C and 11 ± 1 °C) and two food levels (1500 and 4500 prey L−1). Body shape differed between populations and treatments. Population differences were greatest between south-west Scotian Shelf cod and those further north; the former were characterized by a deeper body, larger head, and longer caudal peduncle than cod from the other populations. Significant differences were also observed between two putative populations on the south-west Scotian Shelf, suggesting genetic divergence between spawning aggregations at small spatial scales (< 100 km). Temperature and food supply also influenced body shape, with the effect of the former being more pronounced. Individuals reared at the higher temperature or food level had a deeper body and a larger head than those reared at the lower temperature or food supply. Phenotypic responses to changes in the rearing environment also differed among populations, indicating genetic differences in phenotypic plasticity. Differences between populations in morphology and in phenotypic plasticity suggest genetic divergence at both large (> 1000 km) and small (< 100 km) spatial scales. The genetic differences at large spatial scales counteracted the expected effects of temperature differences in the wild, suggesting countergradient variation in morphology among these populations.  © 2006 Her Majesty the Queen in Right of Canada. Journal compilation © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 351–365.  相似文献   

9.
Viviparity in reptiles is hypothesized to evolve in cold climates at high latitudes and high elevations through selection for progressively longer periods of egg retention. Oxygen consumption of embryos increases during development and therefore longer periods of egg retention should be associated with maternal or embryonic features that enhance embryonic oxygen availability. We tested the hypotheses that embryos of the oviparous lizard Sceloporus undulatus from a high-latitude population in New Jersey are oviposited at more advanced developmental stages and have a higher growth rate at low oxygen partial pressures ( p O2) than embryos from a low-latitude population in South Carolina. These hypotheses were rejected; embryos from the two populations did not differ in embryonic stage at oviposition, survival, rate of differentiation or growth in mass when incubated under simulated in utero conditions at low oxygen concentrations. We also estimated the effective p O2 experienced by lizard embryos in utero . At an effective p O2 of 8.6 kPa (9% O2), development of S. undulatus embryos is arrested at Dufaure and Hubert stage 30 and at a dry mass of 0.8 mg. Physiological and morphological features of gravid females, embryos, or both, that facilitate oxygen uptake for developing embryos appear to be a critical early step during the evolution of reptilian viviparity. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 289–299.  相似文献   

10.
The house mouse ( Mus musculus domesticus ) was introduced into Australia two centuries ago and is now succeeding in a wide range of habitats and climatic regions. To explore how mice exploit such extreme environments, we compared growth rate, morphology and reproductive success of animals reared under differing thermal regimes (13 °C 'cool', 22 °C 'moderate' and 30 °C 'warm') in laboratory mice derived from wild stock. 'Warm' group young were smaller and grew more slowly than those from other groups. At 6 weeks of age, body mass was less in 'warm' than in 'cool' treatment individuals; and liver mass/body mass also was less in 'warm' than in 'cool' treatment individuals. Paired kidney mass/body mass and paired adrenal mass/body mass were less in 'warm' than in 'cool' and 'moderate' treatment mice. Low heritability values indicate that these effects were from the temperature treatments rather than genetic influences. Irrespective of temperature treatment, females were more likely to produce a litter from post-partum matings if they were experienced, rather than young or reproductively naïve, and also bore more young from post-partum matings. These observations contribute to understanding of the sudden plague activities of mice in some parts of Australia and also their sparse distribution in the interior of the continent.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 21–30.  相似文献   

11.
Environmental factors influence variation in life histories by affecting growth, development, and reproduction. We conducted an experiment in outdoor mesocosms to examine how diet and a time constraint on juvenile development (pond‐drying) influence life‐history trade‐offs (growth, development, adult body mass) in the caddis fly Limnephilus externus (Trichoptera: Limnephilidae). We predicted that: (1) diet supplementation would accelerate larval growth and development, and enhance survival to adulthood; (2) pond‐drying would accelerate development and increase larval mortality; and (3) the relationship between adult mass and age at maturity would be negative. Diet supplementation did lead to larger adult mass under nondrying conditions, but did not significantly alter growth or development rates. Contrary to predictions, pond‐drying reduced growth rates and delayed development. The slope (positive or negative) of the female mass–age at maturity relationship depended on interactions with diet or pond‐drying, but the male mass–age relationship was negative and independent of treatment. Our results suggest that pond‐drying can have negative effects on the future fitness of individuals by increasing the risk of desiccation‐induced, pre‐reproductive mortality and decreasing adult body size at maturity. These negative effects on life history cannot be overcome with additional nutritional resources in this species. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 495–504.  相似文献   

12.
This study aimed to identify potential factors responsible for geographically structured morphological variation within the widespread Australian frogs Limnodynastes tasmaniensis Günther and L. peronii Duméril & Bibron. There was support for James's rule, and both latitude and present climate explained large amounts of the variation in body size and shape (particularly in L. peronii ). There was also some support for the influence of several biogeographical barriers. Finally, both species were sexually dimorphic for body size and the degree of sexual size dimorphism (SSD) varied geographically. Climate was an important explanation for SSD variation in L. peronii , while latitude was most important for L. tasmaniensis . Geographical variations in sexual selection via male–male physical competition and climate-related resources are suggested as potential explanations for SSD variation in L. peronii .  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 39–56.  相似文献   

13.
To investigate the sex-dependent effects of sibling cannibalism on variations in life history traits, I analysed body size, weight and instar interval in relation to the occurrence of sibling cannibalism in the ladybird beetle Harmonia axyridis. Sibling cannibalism at the time of hatching significantly affected the body size and weight of adults. There was a 2.32% and 1.05% increase in the body size of males and females, respectively, and a 3.55% increase and a 2.30% decrease in their respective body weights. Sibling cannibalism also significantly shortened the total and larval instar intervals, by 4.24% in males and by 1.22% in females, mainly due to shortening of the first instar. These results suggest that the effects of sibling cannibalism on life history traits are sex-differentiated and are greater in males than in females. A simulation of aphid density indicated that shortening the instar interval affected larval survival; the aphid density when the larvae completed development was 39.71% and 10.52% larger for cannibalistic males and females, respectively, than for non-cannibals. These results suggest that sibling cannibalism promotes more rapid development and larger adult size, although the effect was more pronounced in males than in females. Faster development may be adaptive for resource tracking, and the large adult size may increase fecundity in females and mating success in males through female mate choice, both resulting in an increase in the fitness of cannibals.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 76 , 349–360.  相似文献   

14.
This study compares the population genetic structure of two obligate parthenogenetic sawfly species, Aneugmenus padi (L.) Zhelochovtsev and Eurhadinoceraea ventralis (Panzer) Enslin (Hymenoptera: Tenthredinidae). Allozymes were used to detect genetic differences in larvae collected at different sites in six European countries. For A. padi , scoring six polymorphic enzymes revealed the existence of five dominant, widely distributed clones and several more with only very few individuals occurring locally. The clonal diversity and identity differed across collection sites, with up to at maximum eight clones coexisting at a single locality. In contrast, in E. ventralis , individuals from different localities were all monomorphic for at least six different enzymes and are therefore assumed to belong to the same clone. Differences in population genetic structure of these sawfly species can be related to the differing distributions of their host plants: the fern, Pteridium aquilinum , the host of A. padi , has been an invasive species for more than two hundred years. Spread of clones of A. padi is likely to have closely followed the complex invasive pattern of spread of the plant. Larvae of E. ventralis were collected from local, horticultural plantings of Clematis spp. of recent origin probably with gardeners having traded plants infested with the sawfly.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 219–227.  相似文献   

15.
Male characters that are used for male−male combat are often developed and exaggerated, whereas female equivalent characters are vestigial or vanished. In order to assess whether the characters common to both sexes share the same phenotypic variability due to common genetic architecture, we compared males and females of the stag beetle Prosopocoilus inclinatus using recently developed geometric morphometric methods. Elliptic Fourier analysis was used to compare shape variation between male characters (including exaggerated mandibles) and developmentally homologous female characters. A significant positive correlation was found between the size or between the weight of different body parts in both sexes, but a conspicuous difference was detected in the frequency distribution of the weight of all the body parts. Elliptic Fourier analysis demonstrated that there was marked discontinuous variation in mandibles in males, whereas such a discontinuity was not clear in females. The shape of a character in males exhibited some similarity with that of other characters, but this was not found in females. In a character, growth trajectory of shape was significantly affected by both size and weight in males, whereas size and shape tended to vary independently in female characters. These results support the hypothesis that a large sexual dimorphism in variation in shape is due to alleles accumulating in tight linkage with a sex-determining gene.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 81 , 219–233  相似文献   

16.
Predation has important ecological and evolutionary consequences. Evolutionary responses to diversifying selection include genetic differentiation, the evolution of adaptive phenotypic plasticity, and the genetic differentiation of plastic responses between populations. We tested if pumpkinseed sunfish ( Lepomis gibbosus ) respond to predation cues by changing their external body form in functionally sensible ways. We then asked whether predation has influenced the divergence of coexisting littoral and pelagic ecomorphs, by testing for divergent predator-induced responses. Juvenile L. gibbosus of both ecomorphs were reared with and without predation cues supplied by walleye ( Sander vitreus ) feeding on L. gibbosus . Predation cues stimulated increased body depth and dorsal spine length, but no increase in anal spine length or pectoral fin size. The dorsal spines of pelagic ecomorphs also grew longer than did those of littoral ecomorphs, while positive body depth responses were similar in both ecomorphs. This is the second fish taxa in which predator-induced morphological responses have been found, and the first in which divergent responses have been detected between ecomorphs. This suggests that the developmental systems of L. gibbosus ecomorphs have diverged under selection related to predation. We propose that other 'resource polymorphisms' in fishes have evolved under selection arising from a variety of factors, including predation, and not just selection related to resource use.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 25–36.  相似文献   

17.
An evolutionary explanation should consider the balance between environmentally‐based selective pressures, and the resistance of the organism's phenotype to adaptive evolution, with the latter being captured by the concept of constraint. The limited attention to non‐adaptive explanations in evolutionary ecology is at least partly caused by methodological difficulties with respect to identifying and quantifying constraints. As an example of an experimental approach evaluating a constraint‐based explanation, we present a cross‐species comparison of the shape of reaction norms for size and age at maturity. Instar‐ and sex‐specific development times and final sizes were recorded for two distantly‐related species of insects (Lepidoptera), with larval growth rates being manipulated by means of refined starvation treatments. We found that (1) the ‘classical’ L‐shaped reaction norms for final size and development time are characteristic also of individual larval instars; (2) these responses show a high degree of quantitative similarity across the species, different larval instars, and sexes within species; and (3) the similarity among species and sexes is higher for the penultimate than for the final instar. The high degree of similarity suggests that some physiological mechanisms determining such reaction norms are evolutionarily conservative. An alternative explanation (i.e. quantitative similarity of ecologically based selective pressures) appears less likely. The results of a previous study on a third lepidopteran species not only support our general conclusions, but also provide a clear case of adaptive evolution in some aspects of such reaction norms. The present study shows one way how the data required to measure evolutionary conservatism in reaction norms for body size can be obtained empirically. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 296–307.  相似文献   

18.
Periodical cicadas in the genus Magicicada have an unusual life history that includes an exceptionally long life cycle and a massive, synchronized emergence. Considerable effort has been put into research aimed at understanding the evolutionary history of periodical cicadas, but surprisingly little attention has been given to their morphological evolution. Their slow flight and approachability have been described as 'predator-foolhardy' behaviour. We quantified flight speeds for M. cassini, M. septendecim, and Tibicen chloromera (a nonperiodical cicada species) , and interpreted them in terms of thorax musculature, body proportions and wing size and shape in relation to body size. On average, T. chloromera flew three to four times faster than did the two Magicicada species. Using empirical relationships between flight speed and body length, body mass or wing loading, we determined M. cassini and M. septendecim to be unusually slow fliers for their body size, whereas T. chloromera was not. The relatively slow flight speeds of Magicicada species could be largely accounted for by relatively small thoracic muscle masses, as indicated by thorax length × width measurements, and low wing loadings. Aspect ratio differences were contributing factors. Male Magicicada and female Tibicen were more active in mate searching than was the opposite sex, and correspondingly had relatively large aspect ratios. We interpret the morphological traits responsible for the slow flight of Magicicada species as being adaptations to searching for mates in dense aggregations around the canopy of trees, relatively unconstrained by the per-capita risk of predation.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 1–13.  相似文献   

19.
Temporal evolution of genetic variability may have far-reaching consequences for a diverse array of evolutionary processes. Within the polders of the Bay of Mont-Saint-Michel (France), populations of the land snail Helix aspersa are characterized by a metapopulation structure with occasional extinction processes resulting from farming practices. A temporal survey of genetic structure in H . aspersa was carried out using variability at four microsatellite loci, in ten populations sampled two years apart. Levels of within-population genetic variation, as measured by allelic richness, H e or F is , did not change over time and similar levels of population differentiation were demonstrated for both sampling years. The extent of genetic differentiation between temporal samples of the same population established (i) a stable structure for six populations, and (ii) substantial genetic changes for four populations. Using classical F -statistics and a maximum likelihood method, estimates of the effective population size ( N e) illustrated a mixture of stable populations with high N e, and unstable populations characterized by very small N e estimates (of 5–11 individuals). Owing to human disturbances, intermittent gene flow and genetic drift are likely to be the predominant evolutionary processes shaping the observed genetic structure. However, the practice of multiple matings and sperm storage is likely to provide a reservoir of variability, minimizing the eroding genetic effects of population size reduction and increasing the effective population size.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 89–102.  相似文献   

20.
We maintained pregnant Sphenomorphus indicus under four thermal conditions for the whole gestation period to assess the effects of gestation temperature on offspring phenotypes. Parturition occurred between late June and early August, with females at high body temperatures giving birth earlier than those maintained at low body temperatures. Litter size, litter mass, and postpartum body mass did not differ among treatments, and females with relatively higher fecundity produced smaller offspring. Females gave birth to predominantly female offspring (85.7% of the 14 sexed offspring were females) at 24 °C and to predominantly male offspring (76.5% of the 17 sexed offspring were males) at 28 °C. Females with the opportunity to regulate body temperature produced a mix of sexes that did not differ from equality. Offspring produced in different treatments differed in head size, hind-limb length, and tympanum length, but not in snout-vent length, tail length, body mass, fore-limb length, and eye length. Offspring produced at 28 °C were not only smaller in head size, but also shorter in hind-limb length and tympanum length than those offspring produced at lower temperatures. Offspring produced at 28 °C performed more poorly in the racetrack and grew more slowly than offspring produced in the other three treatments. Taken together, our results show that S. indicus might be a temperature-dependent sex determination species and that offspring phenotypes are impaired at high gestation temperatures but maximized at relatively low gestation temperatures.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 453–463.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号