首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kenneth J. Leto 《BBA》1984,766(1):98-108
Three minor Chl a proteins were detected in electrophoretic profiles from wild-type maize thylakoids. The spectral characteristics of these Chl proteins and the apparent molecular weights of their constituent apoproteins suggested that they were associated with the Photosystem-II reaction center. One of these Chl a-proteins, CPa-1, was present in wild-type thylakoids and a photochemically active Photosystem-II particle, but was missing from thylakoids of a mutant-lacking Photosystem-II reaction center. CPa-2, on the other hand, was enriched in mutant thylakoids but was completely missing from the Photosystem-II particles. We conclude that CPa-1 is most likely to contain the photoactive chlorophyll of Photosystem II, while CPa-2 is not required for Photosystem-II activity. The apparent molecular weights of the major CPa-1 and CPa-2 apoproteins were 48 000 and 42 000, respectively. The third minor Chl protein seems most likely to be an electrophoretic variant of CPa-1 and has been designated CPa-11. Seven other Chl proteins were detected in wild-type profiles. Many of these Chl proteins appeared to be oligomers or highly order complexes of LHCP and CP-1.  相似文献   

2.
Intracytoplasmic membranes of wild type strain 37 b 4 and mutant strains A1a car-bchl-, A1a car-bchl+ ofRhodopseudomonas capsulata were isolated. The membrane proteins were solubilized and separated by polyacrylamide gel electrophoresis (methods of Takayamaet al., 1964; Weber and Osborn, 1969). The band patterns were compared with each other. From the strain A1a car-bchl+ reaction center particles were isolated by treatment of membrane with Triton X-100 followed by sucrose density gradient centrifugation. The reaction center particles were found to be enriched in reaction center bacteriochlorophyll. This pigment shows a reversible bleaching at 855 nm and a blue shift at 798 nm. The light harvesting bacteriochlorophyll portion of this fraction was 14–22% of the total bacteriochlorophyll content. The three main proteins of the reaction center particles amount to about 80% of the total protein of the particles. The molecular weights of the main proteins were estimated to be 32000, 27500 and 22500 daltons.  相似文献   

3.
Pigment-lipoprotein B890 complexes containing reaction center and "light-focusing" bacteriochlorophyll a were isolated from photosynthetic membranes of sulfur (Chromatium minutissimum) and non-sulfur (Rhodopseudomonas palustris) purple bacteria after the treatment with Triton X-100. The molecular weights of complexes were evaluated using several methods (200 000-300 000). By means of electron microscopy the sizes of complexes were found to be about 80 A. On the air-water interface hexagonal packing of complexes was observed. The chemical compositions of complexes are very similar except bacteriochlorophyll a whose specific content is somewhat higher in Chromatium minutissimum. The protein composition of complexes was studied and the molecular weights of proteins were estimated by SDS-gel electrophoresis. The results obtained show significant similarities in molecular organization of B890 complexes isolated from sulfur (Chromatium minutissimum) and non-sulfur (Rhodopseudomonas palustris) purple bacteria.  相似文献   

4.
The isolation of two native light harvesting bacteriochlorophyl.protein complexes from Rhodopseudomonas capsulata is described. The light harvesting bacteriochlorophyll I (B 875) has been isolated from the blue-green mutant A1a+ lacking both carotenoids and light harvesting bacteriochlorophyll II. Light harvesting bacteriochlorophyll I is associated with a protein (light harvesting band 2) of 12 000 molecular weight. Light harvesting bacteriochlorophyll II complex has been isolated from the mutant Y5 lacking a reaction center and light harvesting bacteriochlorophyll I. Light harvesting bacteriochlorphyll II (B 800 + 850) together with carotenoids is associated with two polypeptides (light harvesting bands 3 and 4) having molecular weights of about 8000 and 10 000 (sodium dodecyl sulfate polyacrylamide gel electrophoresis). A third protein (light harvesting band 1) is in the purified light harvesting II fraction (mol. wt. approx. 14 000), but not associated with bacteriochlorophyll or carotenoids. The amino acid composition of the 3 antenna pigment II proteins is given. The polarity of these proteins was found to be 48%. From the amino acid composition the following molecular weights were calculated band 1: 17 350, band 3: 13 350 and band 4: 10 500.  相似文献   

5.
Summary A chromosomal DNA segment encoding the biosynthesis of 987P fimbriae was isolated by cosmid-cloning and subsequent subcloning into pBR322. The 12 kb DNA segment expressed five polypeptides with apparent molecular weights of 81,000, 39,000, 28,500, 20,500, and 16,500, respectively. The location of the corresponding genes was determined by insertional mutagenesis using Tn5. The 20.5 K polypeptide was identified as the 987P fimbrial subunit by its reaction with specific anti-987P antibodies. The 81, 39, and 28.5 K polypeptides appeared to be accessory proteins involved in 987P production.  相似文献   

6.
Reiner Feick  Gerhart Drews 《BBA》1978,501(3):499-513
The isolation of two native light harvesting bacteriochlorophyl · protein complexes from Rhodopseudomonas capsulata is described. The light harvesting bacteriochlorophyll I (B 875) has been isolated from the blue-green mutant Ala+ lacking both carotenoids and light harvesting bacteriochlorophyll II. Light harvesting bacteriochlorophyll I is associated with a protein (light harvesting band 2) of 12 000 molecular weight.Light harvesting bacteriochlorophyll II complex has been isolated from the mutant Y5 lacking a reaction center and light harvesting bacteriochlorophyll I. Light harvesting bacteriochlorphyll II (B 800 + 850) together with carotenoids is associated with two polypeptides (light harvesting bands 3 and 4) having molecular weights of about 8000 and 10 000 (sodium dodecyl sulfate polyacrylamide gel electrophoresis). A third protein (light harvesting band 1) is in the purified light harvesting II fraction (mol. wt. approx. 14 000), but not associated with bacteriochlorophyll or carotenoids. The amino acid composition of the 3 antenna pigment II proteins is given. The polarity of these proteins was found to be 48%. From the amino acid composition the following molecular weights were calculated band 1: 17 350, band 3: 13 350 and band 4: 10 500.  相似文献   

7.
A procedure for the isolation of highly purified bacterial photosynthetic membranes from Rhodopseudomonas viridis is described. The purity of the final membrane fraction has been confirmed by electron microscopy. Seven major polypeptide bands are associated with the photosynthetic membranes, and all seven are resistant to solubilization in Triton X-100 detergent. Two pigmented bands with apparent molecular weights of 44K and 41K are thought to be cytochromes. The three polypeptides with apparent molecular weights of 38K, 32K, and 28K have been reported in reaction center preparations of other laboratories. Two low-molecular-weight (16K and 11K) bands bind bacteriochlorophyll b and may represent light-harvesting bacteriochlorophyll-protein complexes. The structures that were isolated seem to represent complete photosynthetic membranes, consisting of reaction center, electron transport, and light-harvesting components, all arranged in the regular lattice characteristic of viridis. Selective proteolysis of these membranes indicates that all membrane components are accessible to digestion by trypsin and pronase, except for the light-harvesting complexes.  相似文献   

8.
Protein complexes (photochemical reaction complex; PR complex) bound to both light-harvesting bacteriochlorophyll-1 (LH-Bchl-1) and reaction center Bchl (RC-Bchl) were purified from Rhodospirillum rubrum (wild and carotenoid-less), Rhodopseudomonas sphaeroides (wild), and Chromatium vinosum (wild). Another protein complex (LH-2 complex) bound to LH-Bchl-2 was also purified from Rps. sphaeroides. The bacteria were grown in the presence of a [14C]amino acid mixture. The purification procedure included molecular-sieve chromatography in the presence of cholate-deoxycholate, and non-equilibrated isoelectric electrophoresis with 3-[(3-cholamidopropyl)dimethylamino]-1-propanesulfonate. The purified complexes were separated into their constituent proteins by sodium dodecylsulfate-polyacrylamide gel electrophoresis. The molar ratios of the proteins were determined by comparing their radioactivities divided by their molecular weights after consideration of the molecular masses of the complexes. The PR complexes all contained per mol: 1 mol each of RC H-, M-, and L-subunits, 10-13 (probably 12) mol each of two other proteins with molecular weights of 11-12K and 8-11K, 28-32 mol Bchl, 13-15 mol carotenoids (except in the carotenoid-less mutant), 2.6-3.9 mol ubiquinone (or menaquinone in Chr. vinosum), and 53-79 mol phosphate without phospholipid. The LH-2 complex contained per mol: 1 mol 52K protein, about 13 (probably 12) mol each of 9K and 8K proteins, 30 mol Bchl, 10 mol carotenoids, and 38 mol phosphate without phospholipid. The PR complexes and LH-2 complex showed similar X-ray diffraction patterns, implying that they had similar, highly organized molecular structures.  相似文献   

9.
By low intensity picosecond absorption spectroscopy it is shown that the exciton lifetime in the light-harvesting antenna of Rhodopseudomonas (Rps.) viridis membranes with photochemically active reaction centers at room temperature is 60 +/- 10 ps. This lifetime reflects the overall trapping rate of the excitation energy by the reaction center. With photochemically inactive reaction centers, in the presence of P+, the exciton lifetime increases to 150 +/- 15 ps. Prereducing the secondary electron acceptor QA does not prevent primary charge separation, but slows it down from 60 to 90 +/- 10 ps. Picosecond kinetics measured at 77 K with inactive reaction centers indicates that the light-harvesting antenna is spectrally homogeneous. Picosecond absorption anisotropy measurements show that energy transfer between identical Bchlb molecules occurs on the subpicosecond time scale. Using these experimental results as input to a random-walk model, results in strict requirements for the antenna-RC coupling. The model analysis prescribes fast trapping (approximately 1 ps) and an approximately 0.5 escape probability from the reaction center, which requires a more tightly coupled RC and antenna, as compared with the Bchla-containing bacteria Rhodospirillum (R.) rubrum and Rhodobacter (Rb.) sphaeroides.  相似文献   

10.
Membrane proteins with estimated molecular weights of 26,000, 22,000, 19,000, and 10,000–5,000 (designated 9, 10, 11, and 15, respectively) were found previously to be coupled to the synthesis of bacteriochlorophyll in Rhodopseudomonas spheroides. They have been attributed to the reaction center complex (proteins 9, 10, 11) and light-harvesting forms (protein 15) on the basis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane fractions from the wild type and by analysis of certain photosynthetic mutants. Three of the mutants form light harvesting but not reaction-center bacteriochlorophyll; their membranes lack proteins 10 and 11, though proteins 9 and 15 are detectable. These mutants have little or no photophosphorylation or light-induced transhydrogenase activities and their respiration is not inhibited by illumination. Another mutant, strain 71-20 apparently has functional reaction centers, as determined by the above criteria, yet it does not grow anaerobically in the light for unknown reasons.  相似文献   

11.
Calmodulin binding proteins in bovine thyroid plasma membranes were investigated using the 125I-labeled calmodulin gel overlay technique. The purified thyroid plasma membranes contained two calmodulin binding proteins with molecular weights of approx. 220 000 and 150 000 respectively. The binding of 125I-labeled calmodulin to the calmodulin binding proteins was inhibited by excess unlabeled calmodulin, 100 μM trifluoperazine or 1 mM EGTA, indicating that the binding was calmodulin-specific and calcium-dependent. The calmodulin binding proteins appear to be components of the cytoskeleton since they remained in the pellet after treatment of the thyroid plasma membranes with 1% Triton X-100. Similar calmodulin binding proteins were present in rat liver plasma membranes, but not in human red blood cell plasma membranes. These two calmodulin binding proteins may interact with other components of the cytoskeleton and regulate endocytosis, exocytosis and hormone secretion in thyroid cells.  相似文献   

12.
鱼腥藻类囊体膜及其性质的研究   总被引:2,自引:0,他引:2  
研究了鱼腥藻(Anabaena azollae Strasb.)的光合膜及其性质,结果如下:(1)以培养液为反应介质,测出鱼腥藻细胞的光合放氧,这种放氧受电子传递抑制剂DCMU的抑制。1mmol/L的NH_4Cl既延迟光合放氧的诱导期又抑制光合放氧速率。(2)在700~300nm波长范围,鱼腥藻出现4个吸收高峰,分别位于680、625、480和440nm处。其中625nm的吸收峰应属蓝绿藻的特有吸收峰。(3)通过高压氮气破碎法,并结合超声波处理,可以破碎鱼腥藻细胞壁,并从中分离出鱼腥藻类囊体膜制剂。测定表明,这种膜制剂具有进行光合磷酸化的能力,同时亦有膜上ATP酶水解ATP的能力。(4)利用此膜制剂,分离并部分纯化出ATP酶,在SDS-PAGE图谱上,此酶的两种小亚基(δ和ε亚基)的分子量分别低于菠菜叶绿体ATP酶的δ和ε亚基,但两种酶的α和β两种大亚基的分子量相近。以上结果提示,鱼腥藻具有进行光合作用的内在机构,这种机构在组分及其性质上与其它种类光合膜的异同是值得深入研究的课题。  相似文献   

13.
Rhodopseudomonas capsulata was grown either phototropically in the light or chemotrophically in the dark at oxygen tensions of 5 mm and 3 mm Hg in ammonium-limited continuous culture. During growth limitation bacteriochlorophyll content of cells and membranes varied dependent on growth rate drastically in chemotrophic cultures. Concomittantly, the ratio of membrane protein to total protein varied in the range of 30-41%. This dependence of membrane differentiation on growth rate was less evident in phototrophically grown cells. The incorporation of the bulk of bacteriochlorophyll was shown to be quantitatively correlated to the incorporation of 1-3 low molecular weight proteins with molecular weights in the range of 14 to less than 10 k daltons. Supported by similar findings of other authors it is proposed, that these proteins are to be attributed to the species of antenna bacteriochlorophyll and represent components of the photosynthetic apparatus. With decreasing growth rates the size of the photosynthetic unit with respect to the population of bacteriochlorophyll- and protein molecules was reduced subsequent to a reduction in the rate of incorporation of antenna-bacteriochlorophyll and the low molecular weight proteins, the reaction-center bacteriochlorophyll content of the membranes remaining constant. A parallel decrease in potential phosphorylating capacity was observed. It is concluded, that under these conditions, primary photochemical reactions in the reaction center were not the rate-limiting step in photophosphorylation. The interaction of growth limitation by an anabolic precursor (NH+4) and control of membrane differentiation by light intensity or oxygen tension is discussed.  相似文献   

14.
Summary A light-harvesting pigment-protein complex has been isolated fromMantoniella squamata (Micromonadophyceae, Chlorophyta) by nondenaturing polyacrylamide-gel electrophoresis. The complex runs as two bands of molecular weights 54,000 and 55,000. There are two constituent polypeptides of molecular weights 20,500 and 22,000. Antibodies were raised to the 20,500-dalton polypeptides from this complex and to the 24,500-dalton polypeptide from the analogous complex ofPedinomonas minor (Micromonadophyceae). The antibodies to theM. squamata polypeptide are specific for both polypeptides of theM. squamata light-harvesting complex, as well as for a 27,000-dalton polypeptide of undetermined function. The antibodies to theP. minor polypeptide are specific for polypeptide components of the light-harvesting complex of that alga. The antibodies specific for theM. squamata light-harvesting complex polypeptides do not cross react with any polypeptides ofP. minor thylakoid membranes, as demonstrated by crossed immunoelectrophoresis. Similarly, no polypeptides ofM. squamata thylakoids cross react with the antibodies specific forP. minor light-harvesting complex polypeptides. These results indicate that the light-harvesting complex ofM. squamata is structurally very different from that ofP. minor. In a survey of several land plants and green algae, including representatives of all classes of green algae, a light-harvesting complex homologous to that ofM. squamata was found only inMicromonas pusilla. All other organisms tested possessed a lightharvesting complex homologous to that ofP. minor. The evolutionary and taxonomic implications of the novelM. squamata light-harvesting complex are discussed.  相似文献   

15.
D. Garcia  P. Parot  A. Verm  glio 《BBA》1987,894(3):379-385
Pure reaction center preparations from the thermophilic species Chromatium tepidum have been obtained by lauryldimethylamine N-oxide treatment of chromatophores. The light-induced difference spectrum in presence of 10 mM sodium ascorbate revealed the presence of two high-potential cytochrome c hemes (-band, 555 nm; γ-band, 422 nm). The dithionite-minus-oxidized difference spectrum in the -band suggests the presence of additional hemes of low potential. These hemes are associated with a single polypeptide (Mr = 36 000). The reaction center pigments, probably four bacteriochorophyll a and two bacteriopheophytin a molecules, are associated with three polypeptides of apparent molecular weights equal to 33 000, 30 000 and 22 000. A carotenoid molecule is also bound to the reaction center. The three main absorption bands of this molecule are located at 480, 510 and 530 nm at liquid helium temperature. Photochemical activity is found to be stable, even after heating for 10 min at temperatures higher than 60 °C in intact chromatophore membranes. On the other hand, isolated reaction centers or chromatophores treated with 1% lauryldimethylamine N-oxide are fully inactivated after heating at temperatures higher than 50 °C. From these results, we propose that lipid-protein interactions are of prime importance in the thermal stabilization of Chromatium tepidum reaction centers.  相似文献   

16.
Covalent cross-linking of radiolabeled mouse growth hormone (125I-mGH) with the homobifunctional cross-linking agent bis(sulfosuccinimidyl)suberate (BS3) to microsomal membranes prepared from late pregnant mouse liver resulted in the labeling of three specific mGH binding proteins (receptors) with apparent Mr = 125,000, 62,000, and 56,000, as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. These same three specifically labeled proteins were present, but with slightly lower apparent molecular weights, when samples were electrophoresed in the absence of reductant. Cross-linking of 125I-mGH to plasma membrane-enriched fractions of late pregnant mouse liver resulted only in the specific labeling of the two lower molecular weight receptors. Removal of all N-linked carbohydrate with peptide: N-glycosidase F resulted in decreasing the apparent molecular weights of the three receptor forms to 110,000, 50,000, and 46,000 for the 125,000, 62,000, and 56,000 molecular weight forms of the receptor, respectively. Smaller decreases in the molecular weights of all three receptor forms were also apparent after treatment with neuraminidase. However, the differences seen in the intact forms of the growth hormone receptor were also present in the deglycosylated receptors. The relationship between the three forms of the growth hormone receptor was further investigated by comparing the fragments produced by proteolytic digestion of the cross-linked receptors with Staphylococcus aureus protease and endoproteinase Lys-C. The fragments produced from all three receptor forms had very similar molecular weights, although there were slight molecular weight differences in the fragments produced by endoproteinase Lys-C digestion. The overall similarity of the fragments produced by the proteolytic digestions suggests that the three forms of the receptor are related.  相似文献   

17.
Two molecular isoforms of band 4.2 were identified in erythrocyte membranes from 25 Japanese Sika deer (Ceryus nippon yesoensis, Heude) based on specific immunorecognition with anti-human band 4.2. These two variants, designated 4.2/78 and 4.2/76, had respective relative molecular weights (Mr) of 78,000 and 76,000 on sodium dodecyl sulfate-polyacrylamide electrophoresis gels and showed similar profiles after limited proteolysis, exhibiting identity in primary structure. 25 adult Sika deer could be divided into two groups according to the 4.2/78:4.2/76 ration, indicating a genetic control in the expression of the molecular isoforms of band 4.2. Both polypeptides were completely retained in cytoskeletal protein-depleted membranes and could be removed by alkaline extraction, suggesting that both proteins contribute to the association of membrane proteins.  相似文献   

18.
Chromatophore proteins of a wild type and three mutant strains of Rhodopseudomonas spheroides were examined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The mutants consisted of a green and a blue-green one, whose phenotypes were essentially the same as those of known mutants, and a brown one, which may be a double mutant and represents a new phenotype. Wild-type chromatophores contained at least six major and seven minor protein bands, with molecular weights ranging from 10,000 to 65,000. The green mutant contained the same protein bands in the same relative quantities. The brown mutant had one protein completely missing and no other alterations. The blue-green mutant was deficient in a different protein, and had reduced quantities of all proteins with molecular weights less than 25,000. Chromatophores were separated into a fraction containing the reaction centers and a fraction containing the light-harvesting bacteriochlorophyll by treatment with sodium dodecyl sulfate. Eight of the proteins were found only in the reaction center fraction, one was only in the light-harvesting fraction, and the remainder were present in both fractions. The protein missing from the brown mutant was found to be a component of the reaction center fraction, whereas the proteins which were missing from the blue-green mutant were all components of the light-harvesting fraction. Some implications for the structure and biogenesis of chromatophores are discussed.  相似文献   

19.
A plasma membrane-enriched fraction prepared from barley roots was analyzed by two-dimensional gel electrophoresis. Four methods of sample solubilization were assessed on silver stained gels. When membranes were solubilized with 2% sodium dodecyl sulfate followed by addition of Nonidet P-40, gels had high background staining and few proteins because of incomplete solubilization. Gels of membranes solubilized in urea and Nonidet P-40 had a greater number of proteins but proteins with molecular weights greater than 85,000 were absent and proteins with low molecular weights were diffuse. High molecular weight proteins were present in gels of membranes solubilized in 4% sodium dodecyl sulfate followed by acetone precipitation but background staining and streaking remained a problem. Gels of the best quality were obtained when membrane proteins were extracted with phenol and precipitated with ammonium acetate in methanol; background staining and streaking were diminished and proteins were clearly resolved. This method makes possible the resolution required for meaningful qualitative and quantitative comparisons of protein patterns on two-dimensional gels of plant membrane proteins.  相似文献   

20.
A method was developed which allows the isolation and purification of cytoplasmic membranes and chlorosomes from cells of Chloroflexus aurantiacus grown under different light conditions. The dipolar ionic detergent Deriphat (0.08%) and a sodium iodide gradient centrifugation were used in isolating cytoplasmic membranes. Chlorosomes were prepared with 0.16% of the dipolar ionic detergent Miranol and purified by a sucrose gradient centrifugation. Cytoplasmic membrane fractions prepared from either high- (3,000 W m-2), medium-(200 W m-2) or low- (7 W m-2) light-grown cells had near infrared absorption bands at 866, 808, and 755 nm in a constant characteristic absorbance ratio of 6:3.8:1. In all cytoplasmic membrane preparations, the amount of bacteriochlorophyll a (Bchl a) per cytochrome, the amount of Bchl a per reaction center, and reaction center per milligram of cytoplasmic membrane protein was found to be constant. No Bchl c was present. Five respiratory enzyme activities have been measured in the cytoplasmic membrane fraction. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of denatured cytoplasmic membrane showed many bands, but a major polypeptide with an apparent molecular weight of 8,000. In contrast, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified chlorosomes did not contain the 8,000-molecular-weight band but revealed only three distinct protein bands with molecular weights of 15,000, 12,000, and 6,000. Isolated chlorosomes contained Bchl c and a small, yet constant, amount of Bchl a (absorbing at 790 nm) in a molar ratio of 25:1. The data indicated that the components of the photosynthetic apparatus in the cytoplasmic membrane of Chloroflexus aurantiacus remained constant and only the amount of antenna Bchl c varied with light conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号