首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract.  1. Host–parasitoid models often identify foraging behaviour and dispersal distance as important for system persistence.
2. Laboratory observations and field trials were used to characterise foraging behaviour and dispersal capability of Platygaster californica Ashmead (Platygasteridae), a parasitoid of the gall midge Rhopalomyia californica Felt (Cecidomyiidae).
3. Although foraging parasitoids meticulously searched plants in laboratory observations, none of the laboratory trials resulted in 100% parasitism, and the proportion of parasitism declined as midge egg density increased.
4. The field trials showed that the distribution of parasitism over distance from a central release point was hump-shaped, as predicted by a simple diffusion model. Mean parasitoid dispersal distance was 4.5 m, considerably farther than the 1.7 m mean midge dispersal found in previous work.
5. Although the parasitoid appears to search thoroughly for midge eggs and to disperse farther than the midge, the results of this study show how this host–parasitoid system may persist due to spatially variable incomplete parasitism.  相似文献   

2.
The gall midge Obolodiplosis robiniae is a pest of black locust Robinia pseudoacacia. The species was recently introduced into Europe and it is nowadays a usual insect in Slovakia, where two-year field surveys were undertaken during 2007–2008. The main objective of this study was to determine the natural enemies attacking O. robiniae and estimate their influence on midge population, less than 3 years after its introduction. Eight parasitoids and bushcricket Tettigonia viridissima were responsible for midge regulation. The parasitoid complex was not typically that of an introduced species as it was predicted. Firstly, the midge was heavily influenced by a specialized parasitoid Platygaster robiniae, which was a predominant parasitoid and accounted for 98% of all specimens reared. Secondly, annual larval parasitism varied from 5.4 to 10.8%, though the late season average parasitism achieved 26.0% and often exceeded 40%. P. robiniae was also very efficient in exploiting galls and was capable of consistently regulating midge population. The surveys demonstrated that the average cumulative impact of natural enemies on the midge was substantial. Stably around 20% of attacked galls were recorded during the late summer. Bushcrickets were as efficient as parasitoids and played an important role at control, especially during lack of parasitoids. Greater impact of parasitoids was found in the larger settlements than it was in the countryside, when countertendency was valid for bushcrickets. There is an indication that O. robiniae parasitized by specialized parasitoid, and attacked by bushcrickets represents only a moderate risk for R. pseudoacacia or forest stands.  相似文献   

3.
Wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), was first detected as early as 1901 in western Canada. The first major outbreak in Saskatchewan was recorded in 1983. Today wheat midge infests much of the wheat-growing area of Manitoba, Saskatchewan and North Dakota (USA), and is beginning to invade Alberta and Montana (USA). In 1984, Saskatchewan wheat midge populations were found to be parasitized by the egg-larval parasitoid, Macroglenes penetrans (Kirby) (Hymenoptera). Through the successful implementation of conservation techniques, this parasitoid now controls an average of 31.5% of the wheat midge across Saskatchewan. Estimated value of the parasitoid, due to reduction in insecticide costs in Saskatchewan alone, was estimated to be in excess of $248.3 million in the 1990s. The environmental benefits of not having to apply this amount of chemical insecticide are a bonus. To minimize the economic and ecological impact of S. mosellana today, wheat producers in western Canada have access to one of the most comprehensive management programs of any insect pest of field crops. Forecasts and risk warnings, monitoring tools, cultural control, agronomic practices, chemical control, biological control and plant resistance are all available for producers to manage wheat midge.  相似文献   

4.
1. The harlequin bug, a herbivore on bladderpod, is attacked by two specialist egg parasitoids Trissolcus murgantiae and Ooencyrtus johnsonii . Ooencyrtus can out-compete Trissolcus in the laboratory, but coexistence is the norm in field populations. Despite the heavy mortality inflicted by the two parasitoids, the host–parasitoid interaction is persistent in all sites that have been studied in southern California.
2. I manipulated inter-patch distances in a field experiment to determine whether spatial processes drive parasitoid coexistence and/or host–parasitoid dynamics. I first tested the hypothesis that the parasitoids coexist via a dispersal–competition trade-off. Both parasitoid species took significantly longer to colonize isolated patches than well-connected patches, suggesting that they have comparable dispersal abilities. Ooencyrtus did not exclude Trissolcus even when inter-patch distances were reduced to 25–30% of those observed in natural populations. These data suggest that parasitoid coexistence can occur in the absence of a dispersal advantage to the inferior competitor.
3. Since the treatments with isolated vs. well-connected patches did not differ in parasitoid composition, I next asked whether isolation would destabilize, or drive extinct, the host–multiparasitoid interaction. No local extinctions of bugs or parasitoids were observed during the 18-month study period. Bug populations in the isolated patches were no more variable than those in the well-connected patches. In fact, temporal variability in the experimentally isolated patches was comparable to that observed in highly isolated natural populations.
4. These data argue against a strong effect of spatial processes on host–parasitoid dynamics. Local processes may mediate both parasitoid coexistence as well as the host–parasitoid interaction.  相似文献   

5.
Abstract. 1. Experimental studies have shown that larvae of three Pieris butterflies, P.rapae L., P.melete Mènètriés and P.napi L., are attacked by a parasitoid wasp, Apanteles glomeratus L. Although P.rapae larvae are parasitized heavily in the field, P.melete and P.napi are infrequently parasitized successfully because they possess mechanisms for encapsulating parasitoid larvae and for avoiding parasitism.
2. This study examines spatial and temporal variation in rates of parasitism of the three Pieris species by A.glomeratus in the field. We attempted to determine whether P.rapae possesses any means of avoiding parasitism by this wasp, and then to deduce why both P.melete and P.napi have more distinctive avoidance mechanisms than P.rapae.
3. Our results indicate that in temporary habitats, which are the main habitats of P.rapae, P.rapae is able to escape A.glomeratus in time and space by colonizing new habitats before the parasitoid arrives. In permanent habitats, however, such escape is not possible. P.rapae larvae lack physiological or behavioural avoidance mechanisms of reducing parasitism rates in permanent habitats. P.melete and P.napi , in contrast, live only in permanent habitats, where the parasitic pressure is potentially high, and have evolved active avoidance mechanisms.  相似文献   

6.
Abstract.  1. Little is known about underlying mechanisms by which plants indirectly affect parasitism success in hymenopteran endoparasitoids. The hypothesis that host-plant effects can challenge the innate immune system of an insect host was experimentally tested in this study using a model tritrophic, crucifer – lepidopteran [ Plutella xylostella (L.)] – parasitoid [ Cotesia plutellae (Kurdjumov)], system.
2. The effects of host-plant suitability on herbivore performance and parasitism were examined. The bottom-up effect of plant suitability on host-parasitoid immune responses was then evaluated using measures of cellular and humoral effectors.
3. Host-plant quality showed a significant effect on the encapsulation response of P. xylostella to first instar but not to second instar parasitoid larvae. Encapsulation was never sufficient to prevent parasitoid emergence.
4. Poor host-plant suitability suppressed phenoloxidase activity in the absence of the parasitoid. The suppressive effect of C. plutellae on phenoloxidase activity was much greater and no plant effects were detectable after insects had been parasitized.
5. Despite strong plant effects on parasitism, those on immune effectors of the host were transitory or overwhelmed by the effect of the parasitoid.
6. These results demonstrated that plant-mediated variation in parasitism success by C. plutellae were not as a result of plant nutritional status or other attributes affecting the immune function of P. xylostella , nor to host-plant effects on superparasitism.
7. In these experiments, P. xylostella was a fully permissive host to C. plutellae and host-plant-mediated effects on the innate immune response appeared to play no part in parasitoid survival within hosts.  相似文献   

7.
Teder, T., Tammaru, T. and Pedmanson, R. 1999. Patterns of host use in solitary parasitoids (Hymenoptera, Ichneumonidae): field evidence from a homogeneous habitat. - Ecography 22: 79-86.
We detected a significant inter- and intraspecific host preference on the level of individual host use in a system, in which three moth species (Lepidoptera: Noctuidae), feeding on a cattail Typha latifolia , are parasitized by three solitary parasitoid species (Hymenoptera: Ichneumonidae). The biology of the host species is similar but they exhibit remarkable inter- and intraspecific variance in body size. All the parasitoid species preferred the largest host species in this system whereas other host species were used only occasionally. We found that parasitoids which emerged from females of the preferred host species were larger than those which developed in males of the same species. Accordingly, two of the parasitoid species had a significant within-host-species preference: females of the largest moth species were used more often than males. No dependence of the preference pattern on host density was found. This pattern of host use is discussed in the light of the switching theory and the optimal host selection theory. Our results indicate that non-random host use by parasitoids may have significant effects on host populations and communities, and forms a potential selective factor against large body size in herbivorous insects. Unlike the majority of ichneumonid wasps, these three parasitoid species have no remarkable female-biased sexual size dimorphism, in accordance with the predictions of Charnov's sex allocation theory for this case, we did not observe any significant host quality dependent biases in sex allocation: there was no association between host sex and parasitoid sex, neither did parasitoid sex ratio differ between years with different host quality.  相似文献   

8.
Abstract. 1. One possible component of successful parasitism by insect parasitoids is the reduction of predation and hyperparasitism through the modification of host behaviour.
2. Just prior to death, potato aphids, Macrosiphum euphorbiae (Thomas), containing diapausing larvae of the parasitoid Aphidius nigripes Ashmead have been shown to leave the host plant to mummify in concealed sites, while those parasitized by non-diapausing individuals generally leave the aphid colony to mummify on the upper leaf surfaces.
3. The present study examines the within plant distribution of aphids and mummies containing non-diapausing A.nigripes , and compares parasitoid survival among microhabitats under field conditions.
4. On potato, Solunum tuberosum L., a significant proportion of aphids were found on lower leaf surfaces, whereas mummies were usually on the upper surfaces, particularly in the apical stratum of the plant canopy.
5. In both field surveys and experimental manipulations, parasitoid survival was higher on the upper surface of apical leaves than in other microhabitats, due to lower levels of hyperparasitism and, to a lesser extent, lower predation. This suggests that the pressure exerted by natural enemies has influenced the evolution of host behaviour modification.  相似文献   

9.
Summary The parasitoids known to attack 191 phytophagous species of gall midges (Cecidomyiidae) were used to examine factors influencing parasitoid assemblage size. The number of parasitoid species a midge species supports was tested against nine variables describing geographical, biological and ecological attributes of hosts. The apparency of midge larvae was found to have the greatest influence on parasitoid assemblage size; highly visible species support more parasitoids than less visible ones. Pupation site and midge voltinism also significantly affect associated parasitoids, at least for highly apparent hosts. Biogeographic region, host-plant architecture and the plant parts infested were found to be of secondary importance. The surface texture of infested plant parts, the number of midge larvae occupying galls and the diversity of plant tissues infested have minimal apparent effects on parasitoid richness. Parasitoid assemblage size and total parasitism rates were also found to be positively correlated for 73 galling and nongalling midge species, and gallers typically suffer higher levels of parasitism than non-gallers. Using these data to test the enemy hypothesis, which proposes that the galling habit has evolved to escape attack from parasitoids, we conclude that parasitoid pressure cannot account for the presence of galls in the Cecidomyiidae.  相似文献   

10.
1. The effects of body size and asymmetry in morphological traits on field fitness were studied in the parasitoid Trichogramma carverae .
2. Significant fluctuating asymmetry was detected in four bristle counts and two wing measurements made on forewings. There was no evidence for directional asymmetry in any of the traits. An estimate of field fitness was obtained in grapevines by collecting released wasps arriving at oviposition sites consisting of egg rafts of the tortricid Epiphyas postvittana .
3. Comparisons of ovipositing and emergence samples indicated that wasps at oviposition sites were relatively larger and more variable in their size distribution. A non-parametric analysis of the relationship between fitness and size indicated that extremely large wasps had the highest fitness and suggested that small as well as large wasps may have had a fitness advantage.
4. For asymmetry, the only trait showing an association with field fitness was wing length. Wasps with a low length asymmetry were more likely to be collected at oviposition sites, although fitness curves indicated that wasps had a similar fitness once an intermediate length asymmetry was exceeded.
5. Mother–daughter comparisons for wasps from a genetically heterogeneous stock provided no evidence that size measures or asymmetries were heritable when wasps were reared on a factitious host.
6. These findings have implications for improving parasitism rates in inundative releases.  相似文献   

11.
The parasitoid wasp, Hyposoter horticola, parasitizes a nearlyfixed fraction of its host butterfly larvae within a host metapopulationof 300–500 local populations in a 50 x 70-km area. Weshow, through laboratory observation, that the wasp lays eggsin fully developed larvae that have not yet hatched from theegg, constraining the period of host vulnerability to severalhours out of the host's one year lifecycle. The parasitoid achievesa persistent high rate of parasitism over the entire host rangedespite the extremely limited period of host vulnerability aswell as a high rate of host population extinctions and colonizationsof new habitat patches every year. It does this in part by beingextremely mobile. In addition, we show by using a field experimentand observation of marked wasps foraging for hosts in naturalpopulations, that the wasp finds virtually all host egg clustersin the weeks before the hosts become vulnerable to parasitism,and then later returns to parasitize them. By locating the hostsbefore their vulnerability, the wasp extends the time availablefor searching from hours to weeks. After parasitizing aboutone-third of the larvae in a host cluster the wasp stops, apparentlyleaving a mark that deters further parasitism by other individuals.The result of this novel combination of mobility and local foragingbehavior is a stable population size despite an unstable hostthat is vulnerable during about one thousandth of its lifecycle.  相似文献   

12.
Abstract. 1. Laboratory experiments and field studies were conducted to explain the coexistence of an endoparasitoid, Encarsia perniciosi Tower, and an ectoparasitoid, Aphytis melinus DeBach, both of which were introduced into California to control the California red scale, Aonidiella aurantii (Mask.).
2. Encarsia parasitized all scale stages but it preferred first and second instar scales. This is in contrast to Aphytis melinus , in which previous studies have shown that it parasitizes second and third instar females and second instar males but prefers third instar female scales. Encarsia developed most rapidly when it parasitized an early second instar and slowest when it parasitized the mature female scale. However, on early second instar scales it was about 80% as fecund as a wasp that emerged from a mature female scale.
3. Second instar scales parasitized by Encarsia were accepted by Aphytis as readily as unparasitized scales.
4. Encarsia did not distinguish between unparasitized hosts and those previously parasitized by Aphytis.
5. Encarsia always outcompeted by Aphytis when both species parasitize the same host.
6. Encarsia prefers scale on stems whereas Aphytis prefers those on leaves and fruits. This, too, may be a result of interspecific competition with Aphytis.
7. The partitioning of the scale resource by the two species explains why they coexist in coastal southern California but it does not explain why Encarsia disappeared from citrus groves in the inland valleys coincident with the introduction of Aphytis melinus into southern California.  相似文献   

13.
1. Predator-mediated coexistence occurs when predation allows competitors to coexist, due to preferential consumption of a superior competitor relative to an inferior competitor. Differences between the native treehole mosquito ( Aedes triseriatus ) and the co-occurring Asian tiger mosquito ( Aedes albopictus ) in anti-predatory larval behaviours account, in part, for the greater vulnerability of this invasive species to native predatory midge ( Corethrella appendiculata ). We test the hypothesis that stage-dependent differences in the sizes of A. albopictus and A. triseriatus larvae, relative to the size-limited C. appendiculata , contribute to differential consumption and the likelihood of predator-mediated coexistence of these competitors.
2. In all instars, larvae of A. triseriatus were larger than A. albopictus of the same stage. Third and fourth instar C. appendiculata selectively consumed late-stage A. albopictus in preference to same-stage A. triseriatus . Small, early-stage prey larvae did not differ in vulnerability to predation, but large, late-stage larvae differed significantly in vulnerability to predation, probably owing to size-limited predation by fourth instar C. appendiculata. This effect was less pronounced for third instar C. appendiculata .
3. Prey size, in conjunction with anti-predatory behavioural responses, alters the probability of predator-mediated coexistence. A stage-structured predation model showed that equally vulnerable early stages reduce the range of environmental conditions (productivities) in which predator-mediated coexistence is possible, increasing the likelihood of both competitive exclusion of the resident species or failure of the invasive to establish. These results underscore the importance of stage-dependent interspecific differences in predator–prey interactions for determining how predators may affect community composition.  相似文献   

14.
Autoparasitism, interference, and parasitoid-pest population dynamics   总被引:2,自引:0,他引:2  
Autoparasitoids ("heteronomous hyperparasitoids") are parasitoids that lay female eggs on homopteran hosts and male eggs on juvenile parasitoids of either the same species or another species. Males develop as hyperparasitoids and eventually kill the juvenile parasitoid. We present a series of stage-structured models that investigate the effects of autoparasitism on population dynamics. Autoparasitism causes density-dependent mortality on juvenile parasitoids and therefore has a stabilizing effect. This also leads to an increase in host population abundance. In most cases an autoparasitoid leads to higher host equilibrium densities than a comparable primary parasitoid (except when the primary parasitoid is arrhenotokous (sexual) and the autoparasitoid has a low preference for attacking parasitized hosts or can attack the parasitized host for only a small portion of its development). When male autoparasitoids are followed explicitly in the models, mate limitation reduces the stabilizing effect of autoparasitism and leads to a further increase in host abundance. Coexistence of an autoparasitoid with a nonprimary parasitoid or second autoparasitoid is possible when the level of conspecific autoparasitism is greater than the level of heterospecific autoparasitism. When an autoparasitoid coexists with a primary parasitoid, the resulting host density is always greater than that with only the primary parasitoid. Therefore, autoparasitoids have the potential to disrupt control achieved by primary parasitoids. When two autoparasitoids coexist, the resulting host density is always lower than that attained by either autoparasitoid alone. The effects of autoparasitism are compared with those of other forms of interference competition.  相似文献   

15.
In a laboratory study, we determined the potential of threeTrichogramma (Hymenoptera: Trichogrammatidae) species,T. brassicae Bezdenko,T. minutum Riley andT. nr.sibiricum Sorokina, for biological control against six species of forest lepidopteran pests, black army cutworm, hemlock looper, eastern spruce budworm, western spruce budworm, white-marked tussock moth, and gypsy moth. Females of each parasitoid species were offered eggs from each of the six host species. Parasitization and the effect of the host species on the emerging progeny were examined and recorded.Trichogramma minutum had the broadest host range and successfully parasitized four host species out of the six offered.Trichogramma nr.sibiricum had the narrowest host range and parasitized only two species of hosts. Of the six host species, black army cutworm was the most preferred by all threeTrichogramma species; white-marked tussock moth and gypsy moth were not parasitized by any parasitoids. There was a positive correlation between the size of female offspring and their corresponding egg complement in all three parasitoid species. The developmental time of parasitoids from egg to adult was influenced by both the parasitoid and host species. Our results suggest thatT. minutum has the greatest potential for biological control against various forest lepidopteran pests and that the black army cutworm may be the best target candidate for further study.  相似文献   

16.
Abstract. 1. Eurytoma gigantea Walsh is a specialist parasitoid of the tephritid gallmaker Eurosta solidaginis (Fitch).
2. In the natural environment the incidence of parasitism by Eurytoma is greater in small galls than in large ones.
3. Laboratory experiments demonstrated that small galls are not more frequently discovered; however, oviposition attempts on small galls were more likely to be successful.
4. Eurytoma spends much time probing galls too big to penetrate; this leads to a decrease in foraging efficiency when many large galls are present.
5. The chance of successfully penetrating a gall depends on the thickness of the gall wall and the length of the parasitoid's ovipositor.
6. A simulation model was constructed which shows that a gallmak-er's chance of being parasitized depends on gall size, the number of parasitoids that discover the gall, and their ovipositor lengths.  相似文献   

17.
Insect parasitoids play a major role in terrestrial food webs as they are highly diverse, exploit a wide range of niches and are capable of affecting host population dynamics. Formidable difficulties are encountered when attempting to quantify host–parasitoid and parasitoid–parasitoid trophic links in diverse parasitoid communities. Here we present a DNA-based approach to effectively track trophic interactions within an aphid–parasitoid food web, targeting, for the first time, the whole community of parasitoids and hyperparasitods associated with a single host. Using highly specific and sensitive multiplex and singleplex polymerase chain reaction, endoparasitism in the grain aphid Sitobion avenae (F) by 11 parasitoid species was quantified. Out of 1061 aphids collected during 12 weeks in a wheat field, 18.9% were found to be parasitized. Parasitoids responded to the supply of aphids, with the proportion of aphids parasitized increasing monotonically with date, until the aphid population crashed. In addition to eight species of primary parasitoids, DNA from two hyperparasitoid species was detected within 4.1% of the screened aphids, with significant hyperparasitoid pressure on some parasitoid species. In 68.2% of the hyperparasitized aphids, identification of the primary parasitoid host was also possible, allowing us to track species-specific parasitoid-hyperparasitoid links. Nine combinations of primary parasitoids within a single host were found, but only 1.6% of all screened aphids were multiparasitized. The potential of this approach to parasitoid food web research is discussed.  相似文献   

18.
Abstract.  1. The relationship between gall size and mortality of the willow pinecone gall midge Rabdophaga strobiloides (Diptera: Cecidomyiidae) was examined by determining the fate of all galls in a 30-ha area in central Alberta, Canada over 4 years. It was found that gall size has a large effect on the type and intensity of mortality experienced by the gall midge, and consequently this factor has the potential to influence the dynamics of the host–parasitoid interaction through the creation of phenotypic refuges.
2. Total midge mortality ranged from 51% to 78% over the course of the study and was dominated by parasitism by Torymus cecidomyiae (Hymenoptera: Torymidae) and Gastrancistrus sp. (Hymenoptera: Pteromalidae) as well as predation by birds. Gall size had a strong, non-linear effect on the attack rates of each of these natural enemies.
3. Birds attacked the smallest size classes. Torymus cecidomyiae preferentially attacked medium diameter galls and thus avoided predation by birds in smaller galls. Gastrancistrus sp. preferentially attacked the largest galls and consequently suffered lower rates of predation by both T. cecidomyiae and birds.
4. This study emphasises the importance of understanding the interactions among mortality factors in order to describe adequately the susceptibility of R. strobiloides to parasitism and predation, and ultimately its population dynamics.  相似文献   

19.
In many insects the eggs are highly vulnerable and egg parasitism can represent a major cause of mortality. It is thus important for the ovipositing female to find a protected site for her eggs. We have examined how egg parasitation can affect host plant choice by Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). Ovipositing moths exhibited significantly higher preference for alfalfa compared to cotton, both in the laboratory and the field. However, larval performance, in terms of development rate and the attained larval and pupal weight, was significantly better on cotton than on alfalfa. In laboratory tests no difference in larval survival on the two host plants was observed. To test the hypothesis that seeking enemy-free space could be a factor behind the preference for alfalfa, the parasitation levels on the two plants were investigated. In field tests, the egg parasitoid Chelonus inanitus (Linnaeus) (Hymenoptera: Braconidae) parasitized a significantly higher number of egg batches on cotton than on alfalfa. Furthermore, the parasitoid was significantly faster in finding and parasitizing S. littoralis eggs on cotton than on alfalfa in a cage experiment. These findings support the assumption that the preference for the inferior larval food plant, alfalfa, reflects a search for a host plant species on which attacks by natural enemies are less likely. Possible factors accounting for the preference of S. littoralis for alfalfa and the higher parasitation rates on cotton are discussed.  相似文献   

20.
When attacked by herbivores, plants emit volatiles to attract parasitoids and predators of herbivores. However, our understanding of the effect of plant volatiles on the subsequent behaviour of conspecific parasitoids when herbivores on plants are parasitized is limited. In this study, rice plants were infested with gravid females of the brown planthopper (BPH) Nilaparvata lugens for 24 hr followed by another 24 hr in which the BPH eggs on plants were permitted to be parasitized by their egg parasitoid, Anagrus nilaparvatae; volatiles from rice plants that underwent such treatment were less attractive to subsequent conspecific parasitoids compared to the volatiles from plants infested with gravid BPH females alone. Chemical analysis revealed that levels of JA and JA-Ile as well as of four volatile compounds—linalool, MeSA, α-zingiberene and an unknown compound—from plants infested with BPH and parasitized by wasps were significantly higher than levels of these compounds from BPH-infested plants. Laboratory and field bioassays revealed that one of the four increased chemicals—α-zingiberene—reduced the plant's attractiveness to the parasitoid. These results suggest that host plants can fine-tune their volatiles to help egg parasitoids distinguish host habitats with parasitized hosts from those without.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号