首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The major virulence factor of the important human pathogen Streptococcus pyogenes is the M protein, which prevents phagocytosis of the bacterium. In different strains of streptococci, there are over 80 serologically different M proteins and there are additional M-like proteins, some of which bind immunoglobulins. Although the sequence of the M molecules differs among different S. pyogenes strains, all M proteins, and some of the immunogiobulin-binding molecules, have at least two copies of the C repeat region. We describe construction of a deletion mutation in S. pyogenes, which has only one C repeat copy, and show that the mutant strain is still resistant to phagocytosis. The mutation was constructed in vitro and used to replace the resident emm allele in an S. pyogenes strain. To facilitate homologous recombination into the streptococcal chromosome, we adapted a shuttle vector which is temperature sensitive for replication in Gram-positive bacteria but not in Gram-negative hosts. This new method for delivery of a homologous DNA fragment to the S. pyogenes chromosome is efficient and reproducible and should be of general use.  相似文献   

3.
The interaction of Streptococcus pyogenes (group A streptococcus [GAS]) with its human host requires several surface proteins. In this study, we isolated mutations in a gene required for the surface localization of protein F by transposon mutagenesis of the M6 strain JRS4. This gene (srtA) encodes a protein homologous to Staphylococcus aureus sortase, which covalently links proteins containing an LPXTG motif to the cell wall. The GAS srtA mutant was defective in anchoring the LPXTG-containing proteins M6, protein F, ScpA, and GRAB to the cell surface. This phenotype was complemented when a wild-type srtA gene was provided in trans. The surface localization of T6, however, was unaffected by the srtA mutation. The M1 genome sequence contains a second open reading frame with a motif characteristic of sortase proteins. Inactivation of this gene (designated srtB) in strain JRS4 affected the surface localization of T6 but not M6, protein F, ScpA, or GRAB. This phenotype was complemented by srtB in trans. An srtA probe hybridized with DNA from all GAS strains tested (M types 1, 3, 4, 5, 6, 18, 22, and 50 and nontypeable strain 64/14) and from streptococcal groups C and G, while srtB hybridized with DNA from only a few GAS strains. We conclude that srtA and srtB encode sortase enzymes required for anchoring different subsets of proteins to the cell wall. It seems likely that the multiple sortase homologs in the genomes of other gram-positive bacteria have a similar substrate-specific role.  相似文献   

4.
Streptococcus pyogenes (group A Streptococcus [GAS]) is an important pathogen whose virulence is related to the production of exotoxins and the presence of particular surface components. One hundred eighty-two GAS strains were collected in northwestern Italy between 1994 and 2002 and analyzed for phenotypic characteristics (opacity factor, proteolyic activity, and antimicrobial susceptibility) and by polymerase chain reaction for the presence of genes responsible for the production of exotoxins implicated in pathogenesis speA and speF and of prtF1 (encoding fibronectin-binding protein F1). All strains were speF positive and 19.2% were speA positive and prtF1 negative, whereas the prtF1 gene was identified in 39.5% of the other strains. Of these, approximately half revealed the same pulse-field gel electrophoresis (PFGE) pattern but differed in both speA gene and macrolide resistance.  相似文献   

5.
6.
Somatic transposon mutagenesis in mice is an efficient strategy to investigate the genetic mechanisms of tumorigenesis. The identification of tumor driving transposon insertions traditionally requires the generation of large tumor cohorts to obtain information about common insertion sites. Tumor driving insertions are also characterized by their clonal expansion in tumor tissue, a phenomenon that is facilitated by the slow and evolving transformation process of transposon mutagenesis. We describe here an improved approach for the detection of tumor driving insertions that assesses the clonal expansion of insertions by quantifying the relative proportion of sequence reads obtained in individual tumors. To this end, we have developed a protocol for insertion site sequencing that utilizes acoustic shearing of tumor DNA and Illumina sequencing. We analyzed various solid tumors generated by PiggyBac mutagenesis and for each tumor >106 reads corresponding to >104 insertion sites were obtained. In each tumor, 9 to 25 insertions stood out by their enriched sequence read frequencies when compared to frequencies obtained from tail DNA controls. These enriched insertions are potential clonally expanded tumor driving insertions, and thus identify candidate cancer genes. The candidate cancer genes of our study comprised many established cancer genes, but also novel candidate genes such as Mastermind-like1 (Mamld1) and Diacylglycerolkinase delta (Dgkd). We show that clonal expansion analysis by high-throughput sequencing is a robust approach for the identification of candidate cancer genes in insertional mutagenesis screens on the level of individual tumors.  相似文献   

7.
8.
Transposon mutagenesis allows for the discovery and characterization of genes by creating mutations that can be easily mapped and sequenced. Moreover, this method allows for a relatively unbiased approach to isolating genes of interest. Recently, a system of transposon based mutagenesis for Schizosaccharomyces pombe became available. This mutagenesis relies on Hermes, a DNA transposon from the house fly that readily integrates into the chromosomes of S. pombe. The Hermes system is distinct from the retrotransposons of S. pombe because it efficiently integrates into open reading frames. To mutagenize S. pombe, cells are transformed with a plasmid that contains a drug resistance marker flanked by the terminal inverted repeats of Hermes. The Hermes transposase expressed from a second plasmid excises the resistance marker with the inverted repeats and inserts this DNA into chromosomal sites. After S. pombe with these two plasmids grow 25 generations, approximately 2% of the cells contain insertions. Of the cells with insertions, 68% contain single integration events. The protocols listed here provide the detailed information necessary to mutagenize a strain of interest, screen for specific phenotypes, and sequence the positions of insertion.  相似文献   

9.
10.
Abstract

Streptococcus pyogenes is a Gram-positive human bacterial pathogen that causes pharyngitis, tonsillitis, skin infections (impetigo, erysipelis, and other forms of pyoderma), acute rheumatic fever (ARF), scarlet fever (SF), poststreptococcal glomerulonephritis (PSGN), a streptococcal toxic shock syndrome (STSS), and necrotizing fasciitis. These infections are some of the most economically and medically important conditions that affect humans. For example, globally, ARF is the most common cause of pediatric heart disease. It is estimated that in India more than six million school-aged children suffer from rheumatic heart disease (1). In the United States, “sore throat” is the third most common reason for physician office visits and S. pyogenes is recovered from about 30% of children with this complaint (2). It has been estimated that there are 25–35 million cases of streptococcal pharyngitis per year in the United States, and these infections cause 1–2 billion dollars per year in direct health care costs (3,4). Although the continued great morbidity and mortality caused by S. pyogenes in developing nations, the significant health care financial burden attributable to group A streptococci in the United States, and increasing levels of antibiotic resistance (5), have highlighted the need for a fuller understanding of the molecular pathogenesis of streptococcal infection, it has been the relatively recent intercontinental increase in streptococcal disease frequency and severity (6,7) that has resulted in renewed interest in S. pyogenes virulence factors and host-parasite interactions.  相似文献   

11.
Tc1, one of the founding members of the Tc1/mariner transposon superfamily, was identified in the nematode Caenorhabditis elegans more than 25 years ago. Over the years, Tc1 and other endogenous mariner transposons became valuable tools for mutagenesis and targeted gene inactivation in C. elegans. However, transposition is naturally repressed in the C. elegans germline by an RNAi-like mechanism, necessitating the use of mutant strains in which transposition was globally derepressed, which causes drawbacks such as uncontrolled proliferation of the transposons in the genome and accumulation of background mutations. The more recent mobilization of the Drosophila mariner transposon Mos1 in the C. elegans germline circumvented the problems inherent to endogenous transposons. Mos1 transposition strictly depends on the expression of the Mos transposase, which can be controlled in the germline using inducible promoters. First, Mos1 can be used for insertional mutagenesis. The mobilization of Mos1 copies present on an extrachromosomal array results in the generation of a small number of Mos1 genomic insertions that can be rapidly cloned by inverse PCR. Second, Mos1 insertions can be used for genome engineering. Triggering the excision of a genomic Mos1 insertion causes a chromosomal break, which can be repaired by transgene-instructed gene conversion. This process is used to introduce specific changes in a given gene, such as point mutations, deletions or insertions of a tag, and to create single-copy transgenes.  相似文献   

12.
Insertional mutagenesis is a powerful tool for generating knockout mutations that facilitate associating biological functions with as yet uncharacterized open reading frames (ORFs) identified by genomic sequencing or represented in EST databases. We have generated a collection of Dissociation(Ds) transposon lines with insertions on all 5 Arabidopsischromosomes. Here we report the insertion sites in 260 independent single-transposon lines, derived from four different Ds donor sites. We amplified and determined the genomic sequence flanking each transposon, then mapped its insertion site by identity of the flanking sequences to the corresponding sequence in the Arabidopsisgenome database. This constitutes the largest collection of sequence-mapped Ds insertion sites unbiased by selection against the donor site. Insertion site clusters have been identified around three of the four donor sites on chromosomes 1 and 5, as well as near the nucleolus organizers on chromosomes 2 and 4. The distribution of insertions between ORFs and intergenic sequences is roughly proportional to the ratio of genic to intergenic sequence. Within ORFs, insertions cluster near the translational start codon, although we have not detected insertion site selectivity at the nucleotide sequence level. A searchable database of insertion site sequences for the 260 transposon insertion sites is available at http://sgio2.biotec.psu.edu/sr. This and other collections of Arabidopsislines with sequence-identified transposon insertion sites are a valuable genetic resource for functional genomics studies because the transposon location is precisely known, the transposon can be remobilized to generate revertants, and the Ds insertion can be used to initiate further local mutagenesis.  相似文献   

13.
DNA sequencing of the gene encoding a complement-inhibiting protein of Streptococcus pyogenes (streptococcal inhibitor of complement, Sic) was carried out on 49 strains of S. pyogenes serotype M1. Those strains were obtained from patients and asymptomatic carriers in Japan from 1969 to 1997 and had various pulsed-field gel electrophoresis (PFGE) patterns. Four identical polymorphic sites were found in the strains with the same PFGE pattern (Ia), but not in those giving the pattern IIa. The other identical sites were found in the strains with the PFGE pattern IIa, but not in those with the pattern Ia. These observations suggest that each of PFGE patterns was restricted to a set of variation in the sic gene. Received: 13 January 2000 / Accepted: 24 February 2000  相似文献   

14.
The small sizes of the DNA fragments transduced by lysates of phage Mu and of mixed lysates of Mu and mini-Mu18A-1 (an internally deleted Mu phage) provide a method for the selection of insertions of transposon Tn10 located very close to givenEscherichia coli genes. Generalized transduction with Mu lysates selected for those insertions located within 38 kilobase pairs of the gene of interest whereas insertions located within about half that distance are directly selected by use of mini-Mu phages. Use of these transduction systems avoids screening of individual colonies by phage P1 transduction for those transposon insertions closely linked to a given gene. Such insertions are most useful for localized mutagenesis and for in vitro molecular cloning.  相似文献   

15.
Summary We have demonstrated that precise excision of bacterial transposon Tn5 can occur in the yeast, Saccharomyces cerevisiae. Tn5 insertions in the yeast gene LYS2 were generated by transposon mutagenesis made in Escherichia coli by means of a ::Tn5 vector. Nine insertions of Tn5 into the structural part of the yeast LYS2 gene situated in a shuttle epsiomal plasmid were selected. All the plasmids with a Tn5 insertion were used to transform yeast strains carrying a deletion of the entire LYS2 gene or a deletion of the part of LYS2 overlapping the point of insertion.All insertions inactivated the LYS2 gene and were able to revert with low (about 10-8) frequencies to lysine prototrophy. Restriction analysis of revertant plasmids revealed them to be indistinguishable from the original plasmid without Tn5 insertion. DNA sequencing of the regions containing the points of insertions, made for two revertants, proved that Tn5 excision was completely precise.  相似文献   

16.
The adaptation of Rhodocccus erythropolis SQ1 to energy and carbon starvation was investigated in terms of both the capacity to survive starvation and the contribution of a nutrient-induced stationary phase to cross-protection to other types of environmental stress. It was found that R. erythropolis SQ1 survives for at least 43 days in LB and distilled water, and 65 days in chemically defined medium (CDM) containing high (1%) or low (0.1%) glucose. Furthermore, early stationary-phase R. erythropolis SQ1 grown in CDM 0.1% exhibited enhanced resistance to heat and oxidative stress compared with exponential-phase cells. A second objective of this study was to identify genetic elements involved in starvation/stationary-phase survival. A mutant bank of R. erythropolis SQ1 generated by random transposon insertion mutagenesis was screened; four mutants lost culturability when grown in CDM 1%. No drop in culturability was observed when these mutants were grown in CDM 0.1%. The DNA flanking transposon insertion could be recovered from three mutants. Transposon insertions were found in uvrB (UvrB, part of the DNA excision repair mechanism), between a putative guaB gene and another guaB-like gene, and between a gene encoding a putative phosphoglycerate mutase and putative thioredoxin/cytochrome c biogenesis genes. This represents a first study of the starvation/stationary-phase survival response of Rhodococcus, an organism of immense significance in environmental bioremediation and a number of industrial processes.  相似文献   

17.
18.
Summary Wild-type strain A454 (Streptococcus pyogenes) transferred en bloc its erythromycin (Em) and tetracycline (Tc) resistance markers into several plasmid-free streptococcal recipients. No plasmid DNA was detected in either the wild-type or the transconjugant strains. Crosses were performed between A454 and S. faecalis Rec+ or Rec- recipients carrying hemolysin-bacteriocin plasmids, pIP964 or pAD1. The Em Tc-resistant transconjugants obtained harbored either the parental plasmid or an Em Tc resistance plasmid derived from pIP964 or pAD1. The restriction endonuclease analysis of 12 derivative plasmids showed insertions of various sizes into different fragments of pIP964 or pAD1. A454 and the Em Tc-resistant plasmid-free transconjugants were found to contain two EcoRI DNA fragments, that shared homology with 32P-labeled pIP1077, one of the Em Tc resistance derivative plasmids, but not with 32P-labeled pIP964. No homology was detected between pIP1077 and the cellular DNA of the antibiotic-susceptible recipients.Previously Thea Horodniceanu  相似文献   

19.
Transposons are mobile genetic elements that are part of the genomic DNA of numerous organisms and belong to two classes. Unlike class I transposons, class II DNA transposons do not use the stage of RNA synthesis in their transition; they perform it by the cut-and-paste mechanism or with a replicative transposition. The integration of a DNA transposon in a new site results in the duplication of a target sequence on either side of a transposon, and its excision is, as a rule, associated with insertions and deletions. The piggyBac transposon isolated from the Trichoplusia ni moth differs from other mobile elements of its class. Due to its unique ability to leave no traces after excision from an insertion site and to perform successful transposition and transference of large DNA fragments, piggyBac is a convenient tool for the development of gene engineering approaches. The TTAA sequence serves as a target site for transposon integration: insertion in the AT-rich DNA regions is more frequent. The ability of piggyBac to be transferred to a new area independently of the cell apparatus and to restore a DNA site without error after excision lies in the mechanism of its transposition, which is discussed in detail in the present review. Along with other transposons and viruses, the piggyBac transposon is widely used in the transgenesis of various organisms; it also finds application in insertion mutagenesis and gene therapy.  相似文献   

20.
Transposon mutagenesis using transposome complex is a powerful method for functional genomics analysis in diverse bacteria by creating a large number of random mutants to prepare a genome-saturating mutant library. However, strong host restriction barriers can lead to limitations with species- or strain-specific restriction-modification systems. The purpose of this study was to enhance the transposon mutagenesis efficiency of Salmonella Enteritidis to generate a larger number of random insertion mutants. Host-adapted Tn5 DNA was used to form a transposome complex, and this simple approach significantly and consistently improved the efficiency of transposon mutagenesis, resulting in a 46-fold increase in the efficiency as compared to non-adapted transposon DNA fragments. Random nature of Tn5 insertions was confirmed by high-throughput sequencing of the Tn5-junction sequences. The result based on S. Enteritidis in this study should find broad applications in preparing a comprehensive mutant library of other species using transposome complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号