首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipid composition of plasma lipoproteins and erythrocyte ghost membranes has been studied in 16 healthy normolipidaemic subjects and in 16 patients affected by primary lipoprotein lipase deficiency, resulting in severe chylomicronaemia and in cholesterol-depleted low-density lipoproteins and high-density lipoproteins. A significant decrease in membrane cholesterol/phospholipid ratio was observed in lipoprotein lipase deficient patients compared to controls (3.27 +/- 0.33 vs. 3.95 +/- 0.50, mean +/- S.D.; P less than 0.0001). There was also an increase in the erythrocyte membrane phosphatidylcholine/sphingomyelin ratio in lipoprotein lipase deficient patients compared to controls (1.53 +/- 0.10 vs. 1.05 +/- 0.13; P less than 0.0001) due to a concurrent increase in phosphatidylcholine and decrease in sphingomyelin relative concentrations in these patients. Erythrocyte ghost membrane fluidity was determined by fluorescence anisotropy and found to be higher in membranes from lipoprotein lipase deficient patients. This increase in membrane fluidity can be attributed in part to changes in membrane cholesterol and phospholipid concentrations in response to abnormal plasma lipoprotein composition.  相似文献   

2.
The effect of nedocromil sodium on the plasma membrane fluidity of polymorphonuclear leukocytes (PMNs) was investigated by measuring steady-state fluorescence anisotropy of 1-[4-trimethylammonium-phenyl]-6-phenyl- 1,3,5-hexatriene (TMA-DPH) incorporated in the membrane. Our results show that nedocromil sodium 300 muM significantly decreased membrane fluidity of PMNs. The decrease in membrane fluidity of PMNs induced by fMLP was abolished in the presence of nedocromil sodium. These data suggest that nedocromil sodium interferes with the plasma membranes of PMNs and modulates their activities.  相似文献   

3.
Diphenylhexatriene transverse distribution has been studied in normal and diabetic erythrocyte membrane ghosts using fluorescence polarization and fluorescence quenching methods. Acrylamide quenched the fluorescence of diphenylhexatriene according to a dynamic mechanism in agreement with Stern-Volmer equation. Nonlinear least-squares analysis based on quenching results has shown greater accessibility of fluorophore to quencher molecules in diabetic ghosts (37.2 +/- 3.2% in normal vs. 67.5 +/- 6.4% in diabetic membranes). Steady-state fluorescence anisotropy measurements evidenced the lowered membrane lipid fluidity in diabetics (anisotropy values: 0.166 +/- 0.011 in normal subjects vs. 0.193 +/- 0.018 in diabetics). A model mechanism is proposed which attributes the lowered capacity of lipid bilayer in diabetes to the increased ordering and more compact structure of membrane phospholipids. The implications of the results for the resolving of steady-state anisotropy data are discussed.  相似文献   

4.
Plasma membrane fluidity of platelets (PLT) obtained from subjects with primary nocturnal enuresis (PNE) and healthy controls was investigated before and after addition of desmopressin (DDAVP). Membrane fluidity was studied by measuring steadystate fluorescence anisotropy of 1-(4-trimethylammoniumphenyl)-6-phenyl-1, 3, 5-hexatriene incorporated into PLT plasma membrane. Our results show an increase in membrane fluidity at the surface level of PLT from subjects with PNE. Moreover, the addition of DDAVP induces a stable and significant decrease of membrane fluidity in both groups. These results suggest alterations of the lipid order in the exterior part of the PLT plasma membrane from patients with PNE.  相似文献   

5.
Changes in the physico-chemical properties of erythrocyte membranes induced by nonenzymatic glycation as well as the possible prevention of their rise were studied. Using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH), fluorescence anisotropy values were determined in erythrocyte membranes isolated from type 1 and type 2 diabetic patients with and without complications. The mean anisotropy values for the groups of diabetic patients were significantly higher than those for the control group (p < 0.01). This indicated pathologically decreased fluidity in cell membranes in the diabetics regardless of the type of diabetes or the presence of complications. The fluorescence anisotropy positively correlated (p < 0.01) with clinical parameters, such as glycohaemoglobin and plasma cholesterol content, which are important for the monitoring of the compensation status of the diabetic patient. Our results support the suggestion that protein crosslinking and oxidative stress induced by nonenzymatic glycation contribute to changes in the physico-chemical properties of erythrocyte membranes. In vitro testing of a new potential drug resorcylidene aminoguanidine (RAG) showed its ability to increase significantly (p < 0.001), to various extent (p < 0.01), the fluidity of both diabetic and control erythrocyte membranes. Upon the administration of RAG, reduced fluorescence anisotropy values for the groups of diabetic patients approached the normal values obtained for the controls. This may play an important role in the improvement of impaired cell functions found in diabetes that are controlled by the cell membrane.  相似文献   

6.
Although the phenomenon of stimulus-response coupling in polymorphonuclear leukocytes involves a series of membrane events the influence of stimulation on membrane fluidity is to clarify. In our experiments we have used 1-(4-trimethylaminophenyl) 6-phenyl-1,3,5-hexatriene and 1,6-diphenyl-1,3,5-hexatriene fluorescence polarization technique to evaluate membrane fluidity in living polymorphonuclear leukocytes after stimulation with N-formyl-methyonil-leucyl-phenylalanine peptide which has a well defined membrane receptor on the plasma membrane. We report that polymorphonuclear leukocytes stimulation increases 1-(4-trimethylaminophenyl)-6-phenyl-1,3,5-hexatriene polarization, only when colcemid, a microtubule disrupting drug, is added to polymorphonuclear leukocytes. This can be viewed as an indirect evidence that microtubules are involved in the control of polymorphonuclear leukocytes membrane fluidity. On the contrary no changes have been observed with 1,6-diphenyl-1,3,5-hexatriene. This study indicates the potential use of 1-(4-trimethylaminophenyl)-6-phenyl-1,3,5-hexatriene to evaluate the involvement of plasma membrane physical state during intact cell activity.  相似文献   

7.
Alterations in the functional activities of platelets (PLT) in type I diabetes have been widely observed. These changes play a key role in the development of cardiovascular complications in diabetes. Various functional activities of PLT are the result of the interaction of numerous stimuli with PLT plasma membrane. This study was designed to evaluate the oxidative response and membrane modifications of diabetic PLT stimulated by platelet activating factor (PAF). The oxidative response was assessed by employing luminol- and lucigenin-amplified chemiluminescence. Luminol-amplified chemiluminescence is sensitive to the release of hydrogen peroxide whereas lucigenin-amplified chemiluminescence is sensitive to the production of superoxide anion. Membrane fluidity and polarity were studied using fluorescence spectroscopy. Membrane fluidity was investigated by measuring steady-state fluorescence anisotropy of 1-[4-trimethylammonium-phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH) and membrane polarity was studied by measuring the steady-state fluorescence emission and excitation spectra of 2-dimethylamino[6-lauroyl]-naphthalene (Laurdan). The diabetic group consisted of 20 type I diabetic children with good metabolic control. Our results show a significant decrease in the luminol- and lucigenin-amplified chemiluminescence of PAF stimulated PLT in the diabetic group with respect to controls. These data indicate a decrement in the release of reactive oxygen species by diabetic PLT. We observed a significant increase in steady-state fluorescence anisotropy of diabetic PLT membrane that reflects a decrease in membrane fluidity. Laurdan showed a blue shift of the fluorescence emission and excitation spectra in diabetic PLT with respect to the control group, indicating a decrease in membrane polarity. The addition of PAF to PLT induced a red shift of Laurdan spectra in both groups, indicating an increase in membrane polarity. Our study [table: see text] demonstrates an altered oxidative response to PAF stimulation of diabetic PLT, probably due to altered generation or handling of reactive oxygen species, and alterations in the physico-chemical properties of the plasma membrane which could influence various functional activities of PLT.  相似文献   

8.
Membrane fluidity of erythrocytes obtained from 15 children with trisomy 21 and 20 healthy controls were studied by measuring steady-state fluorescence anisotropy and fluorescence lifetime of 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) incorporated in hemoglobin-free erythrocyte membranes. Our results demonstrate a significant decrease in DPH fluorescence anisotropy and a significant increase in TMA-DPH fluorescence anistropy in erythrocytes from subjects with trisomy 21. No significant differences between the two groups were observed in the fluorescence lifetime of DPH and TMA-DPH. These data suggest an increase in membrane fluidity in the interior part of the membrane and a decrease in fluidity at the lipid-water interface region. This could be in part attributed to an increased oxidative damage in trisomy 21.  相似文献   

9.
A fatty meal induces vasodilatation (of both resting and stimulated forearm flow) in healthy young adults, an effect most likely mediated by the vasodilator actions of insulin. We therefore hypothesized that an impaired meal-related vascular response might be an in vivo marker of vascular insulin resistance, related to the presence of diabetes and/or higher age. Postprandial vascular responses were assessed in three groups of subjects: 15 Type 2 diabetic subjects (age 58 +/- 8 yr), 15 age-, gender-, and body mass index (BMI)-matched older control subjects (age 57 +/- 9 yr), and 15 healthy young control subjects (age 33 +/- 7 yr). Studies were carried out before and 3 and 6 h after a standardized high-fat meal (1,030 kcal, 61 g fat). Forearm microvascular flows were measured by strain gauge plethysmography and large-artery function by ultrasound. Resting blood flow and hyperemic area under curve (AUC) flow were not significantly different in diabetic subjects (resting 117 +/- 42% and AUC 134 +/- 46% of premeal values) compared with age-matched controls (resting 131 +/- 39% and AUC 134 +/- 47%); however, the response in diabetic subjects was blunted compared with young controls (resting 171 +/- 67% and AUC 173 +/- 99% of premeal values; P = 0.02 and P = 0.18, respectively). On multiple regression analysis, we found that increasing age (but not BMI or diabetes) was significantly associated with impaired postprandial vascular responses (resting: r = -0.4, P = 0.002; AUC: r = -0.4, P = 0.006). Therefore, meal ingestion results in impaired vasodilator responses in older nondiabetic and diabetic adults, related to aging rather than insulin resistance.  相似文献   

10.
We studied the transport rate of a non-metabolizable hexose analogue, 3-O-methyl-D-glucose, in polymorphonuclear leukocytes (insulin-insensitive cells) from patients with untreated non-insulin-dependent diabetes mellitus. The mean glucose transport rate was significantly elevated in the diabetic patients compared with healthy controls (13.3 +/- 3.7 vs 10.4 +/- 2.5 fl/cell.sec, mean +/- SD, p less than 0.01). In the diabetic subjects, glucose transport rates were positively correlated with HbA1c levels (r = 0.563, p less than 0.01) but had no relations with ambient plasma glucose concentrations. Short-term incubation with 20 mM D-glucose had no effect on glucose transport in those cells. When glucose transport rates, HbA1c and fasting plasma glucose levels were simultaneously measured at weekly intervals over a four-week period in three diabetic subjects, the alterations in transport rates generally paralleled the changes observed in HbA1c levels rather than plasma glucose concentrations. It can be concluded that unlike insulin-sensitive cells such as adipocytes and muscle, glucose transport in human polymorphonuclear leukocytes, which are insulin insensitive cells, is increased in patients with non-insulin-dependent diabetes mellitus. Long-term, not short-term, derangement of glucose metabolism seems to be associated with increased glucose transport rate found in those patients.  相似文献   

11.
In this study, we report for the first time concurrent measurements of membrane potential and dynamics and respiratory chain activities in rat heart mitochondria, as well as calcium transients in the hearts of rats in an early phase of streptozotocin diabetes, not yet accompanied with diabetes-induced complications. Quantitative relationships among these variables were assessed. The mitochondria from diabetic rats exhibited decreased fluorescence anisotropy values of diphenylhexatriene. This indicates that hydrophobic core of the membranes was more fluid compared with controls (p<0.05). We discuss the changes in fluidity as having been associated with augmented energy transduction through the diabetic membranes. Reduced ratio of JC-1 fluorescence (aggregates to monomers) in the mitochondria from diabetic hearts reflected descendent transmembrane potential. A significant negative association between membrane fluidity and potential in the diabetic group was found (p<0.05; r=0.67). Further, we observed an increase in calcium transient amplitude (CTA) in the diabetic cardiomyocytes (p=0.048). We conclude that some of the calcium-induced regulatory events that dictate fuel selection and capacity for ATP production in diabetic heart occur at the membrane level. Our findings offer new insight into acute diabetes-induced changes in cardiac mitochondria.  相似文献   

12.
Oxidized HDL (ox-HDL) has been reported to reduce free cholesterol efflux from cells. In this study we investigate the effect of different stages of ox-HDL on macrophage membrane fluidity and its effect on free cholesterol efflux from macrophages as a cell function influenced by ox-HDL. HDL was oxidized by means of conjugated diene production using copper as a prooxidant. Fluidity of HDL and human THP-1 macrophage membranes was evaluated by changes in fluorescence anisotropy (r) by DPH probe where lower (r) values give higher fluidity. We found that ox-HDL derived from the propagation phase (PP-HDL) and the decomposition phase (DP-HDL) became less fluid ((r): 0.263+/-0.001, 0.279+/-0.002, respectively) than HDL from the lag phase (LP-HDL) and native HDL (nat-HDL) ((r): 0.206+/-0.001) (P<0.05). Macrophages incubated with PP-HDL and DP-HDL had less fluid membranes ((r): 0.231+/-0.001, 0.243+/-0.002, respectively) than those incubated with LP-HDL and nat-HDL ((r): 0.223+/-0.001) (P<0.05). Consequently, fluidity was reduced not only in ox-HDL but also in the cell membranes exposed to ox-HDL. A significant negative correlation was observed between macrophage membrane fluorescence anisotropy (r) and free cholesterol efflux from these cells (-0.876; P<0.05). Thus, lower membrane fluidity was associated with lower free cholesterol efflux from cells. In conclusion, the increase in the HDL oxidation process leads to a lost of macrophage membrane fluidity that could contribute to an explanation of the reduction of free cholesterol efflux from cells by ox-HDL.  相似文献   

13.
Using fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene and its cationic derivative, 1-(4-trimethylaminophenyl)-6-phenyl-1,3,5-hexatriene, we evaluated membrane fluidity in living polymorphonuclear leukocytes and in erythrocytes of psoriatic patients. Our results have shown that erythrocyte membranes of psoriatic patients exhibit a decrease of fluidity. These changes were not associated with any relevant modifications of the cholesterol to phospholipid molar ratio. Moreover, we observed a decrease in polymorphonuclear leukocytes membrane fluidity associated with changes in chemotactic migration. Our results indicate changes of membrane fluidity involving membranes different from the epidermal cells and suggest the hypothesis of a defective membrane-cytoskeleton interaction in psoriasis.  相似文献   

14.
The microviscosity of artificial lipid membranes and natural membranes was measured by the fluorescence polarization technique employing perylene as the probe. Lipid dispersions composed of brain gangliosides exhibited greater microviscosity than phosphatidylserine (268 cP vs 173 cP, at 25 degrees C). Incorporation of cholesterol (30-50%) increased the microviscosity of lipid phases by 200-500 cP. Cholesterol's effect on membrane fluidity was completely reversed by digitonin but not by amphotericin B. Incorporation of membrane proteins into lipid vesicles gave varying results. Cytochrome b5 did not alter membrane fluidity. However, myelin proteolipid produced an apparent increase in microviscosity, but this effect might be due to partitioning of perylene between lipid and protein binding sites since tha latter have a higher fluorescence anisotropy than the lipid. The local anesthetics tetracain and butacaine increased the fluidity of lipid dispersions, natural membranes and intact ascites tumor cell membranes. The effect of anesthetics appears to be due to an increased disordering of lipid structure. The fluidity of natural membranes at 25 degrees C varied as follows: polymorphonuclear leukocytes, 335 cP; bovine brain myelin, 270 cP; human erythrocyte, 180 cP; rat liver microsomes, 95 cP; rat liver mitochondria, 90 cP. In most cases the microviscosity of natural membranes reflects their cholesterol: phospholipid ratio. The natural variations in fluidity of cellular membranes probably reflect important functional requirements. Similarly, the effects of some drugs which alter membrane permeability may be the result of their effects on membrane fluidity.  相似文献   

15.
Effect of protein deficient diet on hepatic plasma membrane fluidity has been studied in rats using (i) steady state fluorescence polarization and anisotropy, (ii) phospholipid and cholesterol contents, (iii) phospholipid fatty acid composition, (iv) turnover of phosphatidyl choline (PC), and (v) activities of membrane-bound enzymes as parameters and rats fed casein (20%) diet as standard group. A significant increase in steady state fluorescence and anisotropy values was registered in the deficient group, indicating increased resistance and hence decrease in fluidity of the plasma membrane. Supplementation of the diet with lysine and threonine improved these values, thereby suggesting the significance of diet for membrane fluidity. Simultaneous significant alterations in other parameters, viz. (i) decrease in PC, PE and free cholesterol and increase in esterified cholesterol contents, (ii) decrease in unsaturation of fatty acids of PC, (iii) decrease in incorporation of NaH2 32PO4, [CH3-14C]choline and [CH3-14C]methionine into plasma membrane PC, and (iv) decrease in activities of plasma membrane 5'-nucleotidase and phosphodiesterase along with increase of (Na(+)-K+)ATPase and adenyl cyclase, were observed in the deficient group which on supplementation with lysine and threonine showed improvement over alterations.  相似文献   

16.
The chemotaxis of blood monocytes and polymorphonuclear leukocytes was measured in 20 adult patients with diabetes mellitus and 11 normal control subjects. In experiments dealing with monocytes, the diabetics had a chemotaxis value (125+/-10) significantly lower than that of controls (368+/-22); the polymorphonuclear leukocytes chemotaxis value of diabetics (468+/-31) was also lower than normal (1256+/-62). Adding insulin (10 unit/1000 cc) to the diabetes leukocytes suspension significantly increased the value of chemotaxis.  相似文献   

17.
Time-resolved fluorescence anisotropy (TRFA) and steady-state anisotropy measurements and fluorescence intensification microscopic observations were made on RAW264 macrophages labeled with 1,6-diphenyl-1,3,5-hexatriene (DPH) or 1-[4-(trimethylammonio)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH). Microscopic analysis revealed that the fluorescent probe DPH was found in association with plasma membranes and small vesicles. Macrophages treated with immune complexes could not be distinguished from untreated cells, indicating that the same membrane compartments were labeled. The probe TMA-DPH was exclusively localized to the plasma membrane. Steady-state anisotropy measurements indicated that in vitro culture conditions did not significantly affect membrane fluidity. TRFA measurements were conducted to determine the physical properties of macrophage membranes during immune recognition and endocytosis. Data were analyzed by iterative deconvolution to yield phi, the rotational correlation time, and r infinity, the limiting anisotropy. These parameters may be interpreted as the "fluidity" and order parameter of the membrane environment, respectively. Typical values for untreated macrophages were phi = 7.8 ns and r infinity = 0.12. Binding and endocytosis of immune complexes prepared in 4-fold antigen excess increase these values to phi = 22.1 ns and r infinity = 0.15. However, receptor-independent phagocytosis of latex beads decreases these values to phi = 2.2 ns and r infinity = 0.10. Addition of catalase before, but not after, immune complex incubation with cells diminishes the effect upon membrane structure, suggesting that H2O2 participates in fluidity changes. Pretreatment of macrophages with the membrane-impermeable sulfhydryl blocker p-(chloromercuri)benzenesulfonic acid also diminished these effects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The effect of cetirizine on plasma membrane fluidity and heterogeneity of human eosinophils, neutrophils, platelets and lymphocytes was investigated using a fluorescence technique. Membrane fluidity and heterogeneity were studied by measuring the steady-state fluorescence anisotropy and fluorescence decay of 1-(4- trimethylammonium-phenyl)-6-phenyl-1, 3, 5-hexatriene (TMA-DPH) incorporated in the membrane. The results demonstrate that cetirizine (1 mug/ml) induced a significant increase in the Hpid order in the exterior part of the membrane and a decrease in membrane heterogeneity in eosinophils, neutrophils and platelets. Moreover, cetirizine blocked the PAF induced changes in membrane fluidity in these cells. Cetirizine did not influence significantly the plasma membrane of lymphocytes. These data may partially explain the effect ofcetirizine on inflammatory cell activities.  相似文献   

19.
The microviscosity of artificial lipid membranes and natural membranes was measured by the fluorescence polarization technique employing perylene as the probe. Lipid dispersions composed of brain gangliosides exhibited greater microviscosity than phosphatidylserine (268 cP vs 173 cP, at 25 °C). Incorporation of cholesterol (30–50%) increased the microviscosity of lipid phases by 200–500 cP. Cholesterol's effect on membrane fluidity was completely reversed by digitonin but not by amphotericin B. Incorporation of membrane proteins into lipid vesicles gave varying results. Cytochrome b5 did not alter membrane fluidity. However, myelin proteolipid produced an apparent increase in microviscosity, but this effect might be due to partitioning of perylene between lipid and protein binding sites since the latter have a higher fluorescence anisotropy than the lipid. The local anesthetics tetracaine and butacaine increased the fluidity of lipid dispersions, natural membranes and intact ascites tumor cell membranes. The effect of the anesthetics appears to be due to an increased disordering of lipid structure. The fluidity of natural membranes at the 25 °C varied as follows:polymorphonuclear leukocytes, 335 cP; bovine brain myelin, 270 cP; human erytherocyte, 180 cP; rat liver microsomes, 95 cP; rat liver mitochondria, 90 cP. In most cases the microviscosity of natural membranes reflects their cholesterol : phospholipid ratio. The natural variations in fluidity of cellular membranes probably reflect important fuctional requirements. Similarly, the effects of some drugs which alter membrane permeability may be the result of their effects on membrane fluidity.  相似文献   

20.
Platelet and erythrocyte membrane changes in Alzheimer's disease   总被引:2,自引:0,他引:2  
Previous reports have suggested that the physical properties of cell membranes and calcium homeostasis in both the central and peripheral nervous system are changed in Alzheimer's disease (AD). This study has examined the biophysical properties of erythrocyte and platelet membranes by measuring the fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) and possible related changes in lipid peroxidation. In addition, we have studied calcium homeostasis by measuring thrombin-stimulated changes in intraplatelet free calcium and Ca2(+)-ATPase activity in AD and healthy age and sex-matched controls. Our results show that there was no significant difference in the fluorescence anisotropy of DPH in erythrocyte membranes isolated from the three groups. There was also no significant difference in lipid peroxidation levels in erythrocytes and plasma of AD patients compared to controls. However, there was a significant reduction in the fluorescence anisotropy of DPH in platelet membranes from AD patients, compared with healthy controls. Recent evident suggests that the increase in platelet membrane fluidity results from alterations in internal membranes. We measured the specific activities of enzyme markers associated with intracellular and plasma membranes in platelets from AD patients and healthy controls. There was a significant reduction in the specific activity of antimycin A-insensitive NADH-cytochrome-c reductase (a specific marker for smooth endoplasmic reticulum (SER)), in AD patients compared to controls, but no change in the specific activity of bis(p-nitrophenyl)phosphate phosphodiesterase (a specific marker for plasma membrane). We have also shown that SER mediated [Ca2+] homeostasis is possibly impaired in AD platelets, i.e., the percentage of thrombin-stimulated increase in intraplatelet [Ca2+] above basal levels was significantly higher in AD compared to matched controls and there were significant reductions in the specific activities of Ca2+/Mg2(+)-ATPase and Ca2(+)-ATPase (but not Mg2(+)-ATPase) in AD platelets. Finally electron microscopic analysis of platelets showed that there was a significant increase in the incidence of abnormal membranes in AD patients compared to controls. The ultrastructural abnormalities seem to consist of proliferation of a system of trabeculated cisternae bounded by SER. These results suggest that both SER structure and function might be defected in AD platelets, which could explain the fluidity changes observed here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号