首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Protease-negative variants were shown to outcompete the wild-type strains of Streptococcus cremoris E8, HP, and Wg2 at pH values higher than 6.0 in milk. For S. cremoris E8 this process was studied in more detail. At lower pH values the wild type had a selective advantage. This pH-dependent selection was not found in all media tested. The poor growth of the protease-negative variant at low pH was not due to lower internal pH values. By growing S. cremoris E8 and Wg2 in acidified milk (pH 5.9) the proteolytic activity of the cultures could be stabilized. In continuous cultures under amino acid limitation the wild type S. cremoris E8 and HP strains had a selective advantage over the protease-negative variants at low dilution rates (D < 0.2) at all pH values of the medium. This was apparently due to a lower affinity-constant (Ks) of the protease-positive variants for amino acids. Finally, a high fraction of protease-positive variants could be maintained in continuous cultures by using a growth medium with low concentrations of casein as a nitrogen source. At high dilution rates nearly all cells were protease positive.  相似文献   

2.
Amino acid limited growth of starter cultures in milk   总被引:2,自引:0,他引:2  
The specific growth rates of several Streptococcus cremoris strains were 10–40% lower in milk than in other growth in media. The growth rates in milk increased when an amino acid mixture or casein was added, whereas, when milk was diluted, the specific growth rate of the streptococci decreased. This decrease could be overcome by bringing the casein concentration in the diluted milk back to the normal value (3%). This indicates that casein-hydrolysis proceeded at a rate too low for the streptococci to reach their potential maximum specific growth rates in milk so that growth in milk is essentially amino acid-limited. This was subsequently demonstrated for S. cremoris by continuous cultivation in media with low casein concentrations. At a low dilution rate casein hydrolysis was fast enough to supply the cells with enough amino acids and lactose was growth-limiting, whereas at higher dilution rates amino acids became growth-limiting. In cultures exponentially growing in milk the concentration of free amino acids was measured to determine which amino acid(s) was(were) absent and could possibly limit growth. A number of essential amino acids (leucine, methionine, glutamate and in some cases phenylalanine) were not detected and addition of these, together, stimulated the growth of S. cremoris in milk. The amino acids leucine and phenylalanine appeared to play a particularly important role in this stimulation. These two are, supposedly, the first amino acids that become limiting during growth in milk. The effect of competition for casein and amino acids by different organisms was studied in continuous cultures. At different dilution rates different strains became dominant in these mixed cultures, suggesting that differences in apparent affinity constants (KS) for casein, leucine and glutamate existed between the strains.  相似文献   

3.
The inhibition of growth of Staphylococcus aureus by lactic streptococci in associative cultures in milk was not due to hydrogen peroxide produced by the streptococci. Dialyzed whey from the milk culture of lactic streptococci was more inhibitory than dialyzed whey from milk acidified with lactic acid, indicating that material other than lactate was also involved. Analyses of cation and anion exchange fractions from the dialyzed whey showed that only the neutral fraction was inhibitory.  相似文献   

4.
Casein whey permeate (CWP), a lactose-enriched dairy waste effluent, is a viable feed stock for the production of value-added products. Two lactic acid bacteria were cultivated in a synthetic casein whey permeate medium with or without pH control. Lactobacillus lactis ATCC 4797 produced d-lactic acid (DLA) at 12.5 g l?1 in a bioreactor. The values of Leudking–Piret model parameters suggested that lactate was a growth-associated product. Batch fermentation was also performed employing CWP (35 g lactose l?1) with casein hydrolysate as a nitrogen supplement in a bioreactor. After 40 h, L. lactis produced 24.3 g lactic acid l?1 with an optical purity >98 %. Thus CWP may be regarded as a potential feed-stock for DLA production.  相似文献   

5.
Streptococcus cremoris was cultivated for 7 days at 30°C in sterilized skim milk or in the sterilized 10% solution of dry skim milk. This skim milk culture was divided into precipitate and supernatant by centrifugation. The absorbancy at 280 mμ of the supernatant prepared from the skim milk culture of S. cremoris was higher than that of the control supernatant.

Casein prepared from the skim milk culture of S. cremoris was less hydrolyzed by rennet than control casein at pH 7.0.

According to the free boundary electrophoretic analysis of the treated casein in m/10 veronal buffer of pH 8.5 containing urea, α-casein seemed to be hydrolyzed by S. cremoris but β-casein did with more difficulty.  相似文献   

6.
The action of intracellular proteases of lactic acid bacteria (IPLB) at pH 7 on various paracaseins was studied. Paracaseins prepared by releasing of 3~7% non casein type nitrogen (NCN) were hydrolyzed by IPLB with more difficulty than native or other paracaseins prepared by releasing of less or above 3~7% NCN. This phenomenon was not found in a case of a neutral protease of Bacillus subtilis. Hydrolyzed casein by rennin or IPLB of S. cremoris were studied by DEAE-cellulose column chromatography, starch-gel or agar-gel electrophoresis. It was estimated that not only some part of α-casein but also β-casein were hydrolyzed by IPLB of S. cremoris.  相似文献   

7.
Proteolytic activity in the extract from the cells of Streptococcus cremoris increased in the presence of casein, lactose, glucose, and CaCl2 in the media but was negligibly detectable in the extract of the cells harvested from the culture containing succinate or citrate. The intracellular proteinase from S. cremoris harvested from tomato medium was purified 150-fold in this experiment. The enzyme had a molecular weight of 140,000, optimum pH at 6.5 to 7.0, and maximum activity at 30 C. The proteinase was activated by Ca2+ and inhibited by Zn2+, Cu2+, Hg2+, Fe2+, ethylenediaminetetraacetate, and sodium lauryl sulfate. The Km value of the enzyme towards each casein fraction was almost the same, and the Vmax of the enzyme towards αs-casein was smaller than those towards the other casein fractions.  相似文献   

8.
A simple, efficient procedure for removing lactic acid and for reducing nonprotein nitrogen and ash in lactic acid whey has been developed. The procedure consists of culturing Candida ingens on the whey. This organism could assimilate >98% of the lactic acid and approximately 40% of the nonprotein nitrogen. Ash reduction of up to 45% resulted from precipitation of calcium apatite due to the increase in pH from 4.4 to approximately 8.0 which occurred during growth of C. ingens. Improved fluxes during laboratory-scale ultrafiltration were obtained for the treated lactic acid whey. C. ingens treatment of lactic acid whey appears to facilitate processing of this material to a more useful product.  相似文献   

9.
Improved medium for lactic streptococci and their bacteriophages   总被引:234,自引:140,他引:94       下载免费PDF全文
Incorporation of 1.9% β-disodium glycerophosphate (GP) into a complex medium resulted in improved growth by lactic streptococci at 30 C. The medium, called M17, contained: Phytone peptone, 5.0 g; polypeptone, 5.0 g; yeast extract, 2.5 g; beef extract, 5.0 g; lactose, 5.0 g; ascorbic acid, 0.5 g; GP, 19.0 g; 1.0 M MgSO4·7H2O, 1.0 ml; and glass-distilled water, 1,000 ml. Based on absorbance readings and total counts, all strains of Streptococcus cremoris, S. diacetilactis, and S. lactis grew better in M17 medium than in a similar medium lacking GP or in lactic broth. Enhanced growth was probably due to the increased buffering capacity of the medium, since pH values below 5.70 were not reached after 24 h of growth at 30 C by S. lactis or S. cremoris strains. The medium also proved useful for isolation of bacterial mutants lacking the ability to ferment lactose; such mutants formed minute colonies on M17 agar plates, whereas wild-type cells formed colonies 3 to 4 mm in diameter. Incorporation of sterile GP into skim milk at 1.9% final concentration resulted in enhanced acid-producing activity by lactic streptococci when cells were inoculated from GP milk into skim milk not containing GP. M17 medium also proved superior to other media in demonstrating and distinguishing between lactic streptococcal bacteriophages. Plaques larger than 6 mm in diameter developed with some phage-host combinations, and turbid plaques, indicative of lysogeny, were also easily demonstrated for some systems.  相似文献   

10.
The regulation of milk constituents, synthesis and secretion in tissue cultures of the bovine mammary gland was altered by a whey fraction of bovine milk. α-Casein gene expression, casein secretion and fatty acid synthesis were inhibited by the whey fraction in a dose-dependent manner. The whey fraction inhibited the enhancement activity of prolactin on α-casein gene expression and fatty acid synthesis, and also inhibited casein secretion to the medium, in explants cultured in a medium with or without prolactin. No effect on the expression of the β-lactoglobulin gene was found.  相似文献   

11.
The cell wall proteinase fraction of Streptococcus cremoris HP has been isolated. This preparation did not exhibit any activity due to either specific peptidases known to be located near the outside surface of and in the membrane or intracellular proteolytic enzymes. By using thin-layer chromatography for the detection of relatively small hydrolysis products which remain soluble at pH 4.6, it was shown that β-casein is preferentially attacked by the cell wall proteinase. This was also the case when whole casein or micelles were used as the substrate. κ-casein hydrolysis is a relatively slow process, and αs-casein degradation appeared to proceed at an extremely low rate. These results could be confirmed by using 14CH3-labeled caseins. A relatively fast and linear initial progress of 14CH3-labeled β-casein degradation is not inhibited by αs-casein and only slightly by κ-casein at concentrations of these components which reflect their stoichiometry in the micelles. Possible implications of β-casein degradation for growth of the organism in milk are discussed.  相似文献   

12.
Production of Bakers' Yeast in Cheese Whey Ultrafiltrate   总被引:2,自引:1,他引:1       下载免费PDF全文
A process for the production of bakers' yeast in whey ultrafiltrate (WU) is described. Lactose in WU was converted to lactic acid and galactose by fermentation. Streptococcus thermophilus was selected for this purpose. Preculturing of S. thermophilus in skim milk considerably reduced its lag. Lactic fermentation in 2.3×-concentrated WU was delayed compared with that in unconcentrated whey, and fermentation could not be completed within 60 h. The growth rate of bakers' yeast in fermented WU differed among strains. The rate of galactose utilization was similar for all strains, but differences in lactic acid utilization occurred. Optimal pH ranges for galactose and lactic acid utilization were 5.5 to 6.0 and 5.0 to 5.5, respectively. The addition of 4 g of corn steep liquor per liter to fermented WU increased cell yields. Two sources of nitrogen were available for growth of Saccharomyces cerevisiae: amino acids (corn steep liquor) and ammonium (added during the lactic acid fermentation). Ammonium was mostly assimilated during growth on lactic acid. This process could permit the substitution of molasses by WU for the industrial production of bakers' yeast.  相似文献   

13.
In sterilized skim milk or sterilized 10% solution of dry skim milk at 120°C for 15 min, Lactobacillus bulgaricus, Lactobacillus helveticus and Streptococcus lactis were cultivated for 7 days at given temperature.

Both NCN (non casein type nitrogen) content and pH in each culture of lactic acid bacteria were rapidly decreased until 2 days after cultivation, But NCN content increased and the pH change got small after 3 days cultivation.

Caseins prepared from the cultures of these three kinds of lactic acid bacteria were examined electrophoretically. From the results of electrophoresis of these caseins, we have concluded that α-casein could be hydrolyzed by these lactic acid bacteria. And, it seemed that β-casein could not be hydrolyzed by these lactic acid bacteria.

Rennet easily hydrolyzed casein treated with L. bulgaricus and L. helveticus but hardly hydrolyzed that treated with S. lactis compared with control-casein. Caseins treated with L. bulgaricus and L. helveticus were hydrolyzed easier than control-casein.

Particle weights of caseins prepared from fermented milk by lactic acid bacteria, Streptococcus cremoris, Streptococcus lactis, Lactobacillus bulgaricus and Lactobacillus helveticus, and of hydrolyzed casein by rennet, trypsin or pepsin were measured according to the light scattering experiment.

Particle weights of various treated caseins were larger than that of raw native casein at both pH 7.0 and 12.0. And the heating caused the polymerization of casein to large particle.  相似文献   

14.
Certain cultures of Streptococcus cremoris produced a bitter taste that occurred in the whey portion of milk cultures. Whey from a culture which produced bitterness was fractionated on Sephadex. The fraction in which the bitter taste was concentrated was chromatographed successively on paper with butanol-acetic acid-water (5:1:4), and then butanol-2-butanone-water (2:2:1). In each instance, the bitter component was in the most rapidly moving band that gave a positive ninhydrin test. The bitterness was observed to be caused by a peptide containing the following numbers of each amino acid: arginine, 1; glutamic acid, 2; glycine, 2; isoleucine, 2; leucine, 2; phenylalanine, 1; proline, 5; and valine, 4. N-terminal amino acids could be detected by coupling with 2,4-dinitrofluorobenzene or phenylisothiocyanate, or by hydrolysis with leucine aminopeptidase. When treated with carboxypeptidase, only leucine and valine appeared at the C-terminal end, and these were detected simultaneously.  相似文献   

15.
The fermentation process of acid curd whey using pure cultures of L. bulgaricus and L. acidophilus was investigated. The influence of the starter culture amount on the acidification rate in the fermentation was specified, the biological value of fermented and fermented-ammoniated curd whey was determined, and the ability of fermented whey to prevent the injurious effect of Bac. mesenthericus on the wheat bread quality was examined. Acid curd whey was fermented up to a titratable acidity of 19.8–21.6 g lactic acid/kg whey using L. acidophylus and L. bulgaricus. Mathematical equations were developed on the basis of experimental data to calculate the titratable acidity (A) as a functionof fermentation time (τ) and temperature (t). Fermentation and fermentation-ammoniation processes increase the biological value of whey (the content of the vitamins B1, B2, B6, PP and the free amino acids increase). A new dry fodder BIOLAKTS was developed from fermented curd whey and was recommended for use in veterinary medicine. The fermentation-ammoniation process of curd whey was carried out by adding calculated amounts of non-protein nitrogen NH4OH to increase the total protein equivalent and to achieve mutual proportions of protein and lactose 1:1.4, as in skimmed milk. Fermented-ammoniated curd whey was used to obtain a skimmed milk substitute. A dry flour lactic acid concentrate (FLC) was created as a mixture of high quality wheat flour and evaporated fermented whey in established ratios. As our experiments prove, it can be used as an additive in bread-making to prevent the spoiling of wheat bread by Bac. mesenthericus.  相似文献   

16.
The purpose of this study was to determine the concentration and distribution of lead, calcium, iron, zinc, and copper in major fractions (fat, casein, whey) of mature milk from 38 nursing adult women with low environmental lead exposure. The potential associations between milk lead and maternal blood lead and between milk and blood lead and essential mineral data (nutritional status, dietary intake, and milk concentration) were investigated. Maternal blood lead (geometric mean, 60 μg/L) was negatively associated, although modestly, with dietary calcium intake (r=−0.32, p=0.02). Lead in whole milk (geometric mean, 1.2 μg/L) was positively associated with calcium in whole milk (r=0.56, p=0.005). Distribution of lead in milk fractions was 63%, 28%, and 9%, in whey, fat, and casein, respectively. Milk distribution of essential minerals was 67–76%, 17–18%, and 7–17% in whey, fat, and casein, respectively. Lead in milk whey was positively associated with lead in maternal blood (r=0.49, p=0.02). However, milk lead was not affected by nutritional status, dietary intake, and milk composition of the essential minerals. The high percentage of lead in the milk whey fraction, as seen for the essential minerals, suggests that most lead in human milk is bioavailable to the infant.  相似文献   

17.
Deoxyribonucleic Acid Homology Among Lactic Streptococci   总被引:10,自引:8,他引:2       下载免费PDF全文
A comparison was made by deoxyribonucleic acid homology of 45 strains of lactic streptococci, using two strains of Streptococcus cremoris and three strains of Streptococcus lactis as reference strains. All S. cremoris strains were grouped together by deoxyribonucleic acid homology. S. lactis strains formed a second group, except that three strains of S. lactis showed a high degree of homology with S. cremoris strains. The three Streptococcus diacetylactis strains could not be differentiated from S. lactis strains. In spite of these differences between S. lactis and S. cremoris strains, the majority of S. cremoris, S. lactis, and S. diacetylactis strains studied had at least 50% of their base sequences in common. In contrast, Streptococcus thermophilus strains generally showed little relationship with the other strains of lactic streptococci. The relevance of these findings to the selection of starter strains for cheese making is discussed.  相似文献   

18.
Lactic acid is the inhibitory agent in yoghurt responsible for the inhibition of Salmonella typhimurium. Casein, however, may exert a protective effect toward the survival of the salmonella in acid-milk products. Salmonella typhimurium was found to die-off 21.2% more rapidly in 18-h yoghurt-whey than in 18-h yoghurt at 37 degrees C with a pH of 3.85 and 1.42% lactic acid. When casein was added to yoghurt-whey, the die-off rate of the salmonellas was reduced to that found in yoghurt. The rate remained unchanged when 4.8% sodium caseinate was added to the whey. When 0 to 14% casein was added to the acid-whey the die-off rate changed from 9.7 to 24.0 min/log reduction of cells, respectively. There was a direct correlation between the increase in casein concentration and length of survival of the salmonellas. At a pH of 3.85, 4.2 or 4.5, the die-off rate was 6.5, 13.0 or 40 min/log reduction of cells in milk containing 1.42% lactic acid, and was 4.0, 10.0 or 33.3 min/log reduction, respectively, in whey with 1.42% lactic acid. Thus, the protective effect of casein toward Salm. typhimurium increased as the pH increased. This indicated that casein exerts a protective effect on Salm. typhimurium in acid dairy products and the degree of protection depends on the casein concentration, the form of the casein molecule and the pH.  相似文献   

19.
Lactic acid is the inhibitory agent in yoghurt responsible for the inhibition of Salmonella typhimurium. Casein, however, may exert a protective effect toward the survival of the salmonella in acid-milk products. Salmonella typhimurium was found to die-off 21.2% more rapidly in 18-h yoghurt-whey than in 18-h yoghurt at 37 C with a pH of 3.85 and 1.42% lactic acid. When casein was added to yoghurt-whey, the die-off rate of the salmonellas was reduced to that found in yoghurt. The rate remained unchanged when 4.8% sodium caseinate was added to the whey. When 0 to 14% casein was added to the acid-whey the die-off rate changed from 9.7 to 24.0 min/log reduction of cells, respectively. There was a direct correlation between the increase in casein concentration and length of survival of the salmonellas. At a pH of 3.85, 4.2 or 4.5, the die-off rate was 6.5, 13.0 or 40 min/log reduction of cells in milk containing 1.42% lactic acid, and was 4.0, 10.0 or 33.3 min/log reduction, respectively, in whey with 1.42% lactic acid. Thus, the protective effect of casein toward Salm. typhimurium incieased as the pH increased. This indicated that casein exerts a protective effect on Salm. typhimurium in acid dairy products and the degree of protection depends on the casein concentration, the form of the casein molecule and the pH.  相似文献   

20.
The effect of simultaneous modification of medium composition and growth conditions on the production of Lactococcus lactis subsp. cremoris biomass in calcium alginate beads was studied by the response surface method. Statistical methods of data analysis for unbalanced experiments are illustrated. The media tested were whey, whey supplemented with yeast extract and/or meat extract, milk, and the commercial medium Gold Complete (Nordica). Fermentations were performed at 23°C under pH control (5.6, 6.0, 6.4, or 6.8). In one complete series, 1% CaCO3 was added to the growth media. There were strong interactions between CaCO3 and media, CaCO3 and pH level, and CaCO3, media, and pH level. In media with CaCO3, all first-order interactions between media, pH, and sampling time were significant. The addition of CaCO3 increased cell counts in whey-meat extract medium, but no significant difference was found with the other media. Uncoupling between growth and acidification occurred between 16 and 22 h. Highest counts were obtained on milk and Gold Complete (6 × 1010/g). In CaCO3-containing media, pH influenced cell counts only in whey and in Gold Complete (pH 5.6 and 6.0 giving the best results); pH also influenced the bead mass obtained at the end of the fermentation. Biomass production in alginate gels is proposed as a method of obtaining concentrated cell suspensions without centrifugation or filtration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号