首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tpr is a 270-kD coiled-coil protein localized to intranuclear filaments of the nuclear pore complex (NPC). The mechanism by which Tpr contributes to the structure and function of the nuclear pore is currently unknown. To gain insight into Tpr function, we expressed the full-length protein and several subdomains in mammalian cell lines and examined their effects on nuclear pore function. Through this analysis, we identified an NH2-terminal domain that was sufficient for association with the nucleoplasmic aspect of the NPC. In addition, we unexpectedly found that the acidic COOH terminus was efficiently transported into the nuclear interior, an event that was apparently mediated by a putative nuclear localization sequence. Ectopic expression of the full-length Tpr caused a dramatic accumulation of poly(A)+ RNA within the nucleus. Similar results were observed with domains that localized to the NPC and the nuclear interior. In contrast, expression of these proteins did not appear to affect nuclear import. These data are consistent with a model in which Tpr is tethered to intranuclear filaments of the NPC by its coiled coil domain leaving the acidic COOH terminus free to interact with soluble transport factors and mediate export of macromolecules from the nucleus.  相似文献   

2.
While much has been learned in recent years about the movement of soluble transport factors across the nuclear pore complex (NPC), comparatively little is known about intranuclear trafficking. We isolated the previously identified Saccharomyces protein Mlp1p (myosin-like protein) by an assay designed to find nuclear envelope (NE) associated proteins that are not nucleoporins. We localized both Mlp1p and a closely related protein that we termed Mlp2p to filamentous structures stretching from the nucleoplasmic face of the NE into the nucleoplasm, similar to the homologous vertebrate and Drosophila Tpr proteins. Mlp1p can be imported into the nucleus by virtue of a nuclear localization sequence (NLS) within its COOH-terminal domain. Overexpression experiments indicate that Mlp1p can form large structures within the nucleus which exclude chromatin but appear highly permeable to proteins. Remarkably, cells harboring a double deletion of MLP1 and MLP2 were viable, although they showed a slower net rate of active nuclear import and faster passive efflux of a reporter protein. Our data indicate that the Tpr homologues are not merely NPC-associated proteins but that they can be part of NPC-independent, peripheral intranuclear structures. In addition, we suggest that the Tpr filaments could provide chromatin-free conduits or tracks to guide the efficient translocation of macromolecules between the nucleoplasm and the NPC.  相似文献   

3.
4.
5.
6.
Using a monoclonal antibody, mAb 203-37, we have identified a polypeptide of Mr ~270 kD (p270) as a general constituent of the intranuclear filaments attached to the nucleoplasmic annulus of the nuclear pore complex (NPC) in diverse kinds of vertebrate cells. Using cDNA cloning and immunobiochemistry, we show that human protein p270 has a predicted molecular mass of 267 kD and is essentially identical to the coiled-coil dominated protein Tpr reported by others to be located on the outer, i.e., cytoplasmic surface of NPCs (Byrd, D.A., D.J. Sweet, N. Pante, K.N. Konstantinov, T. Guan, A.C.S. Saphire, P.J. Mitchell, C.S. Cooper, U. Aebi, and L. Gerace. 1994. J. Cell Biol. 127: 1515–1526). To clarify this controversial localization, we have performed immunoelectron microscopy in diverse kinds of mammalian and amphibian cells with a series of antibodies raised against different epitopes of human and Xenopus laevis p270/Tpr. In these experiments, the protein has been consistently and exclusively detected in the NPC-attached intranuclear filaments, and p270/Tpr-containing filament bundles have been traced into the nuclear interior for up to 350 nm. No reaction has been noted at the cytoplasmic side of NPCs with any of the p270/Tpr antibodies, whereas control antibodies such as those against protein RanBP2/ Nup358 specifically decorate the cytoplasmic annulus of NPCs. Pore complexes of cytoplasmic annulate lamellae in various mammalian and amphibian cells are also devoid of immunodetectable protein p270/Tpr. We conclude that this coiled-coil protein is a general and ubiquitous component of the intranuclear NPC- attached filaments and discuss its possible functions.  相似文献   

7.
Intranuclear filaments containing a nuclear pore complex protein   总被引:20,自引:12,他引:8  
《The Journal of cell biology》1993,123(6):1333-1344
Nuclear pore complexes (NPCs) are anchoring sites of intranuclear filaments of 3-6 nm diameter that are coaxially arranged on the perimeter of a cylinder and project into the nuclear interior for lengths varying in different kinds of cells. Using a specific monoclonal antibody we have found that a polypeptide of approximately 190 kD on SDS-PAGE, which appears to be identical to the recently described NPC protein "nup 153," is a general constituent of these intranuclear NPC-attached filaments in different types of cells from diverse species, including amphibian oocytes where these filaments are abundant and can be relatively long. We have further observed that during mitosis this filament protein transiently disassembles, resulting in a distinct soluble molecular entity of approximately 12.5 S, and then disperses over most of the cytoplasm. Similarly, the amphibian oocyte protein appears in a soluble form of approximately 16 S during meiotic metaphase and can be immunoprecipitated from egg cytoplasmic supernatants. We conclude that this NPC protein can assemble into a filamentous form at considerable distance from the nuclear envelope and discuss possible functions of these NPC-attached filaments, from a role as guidance structure involved in nucleocytoplasmic transport to a form of excess storage of NPC proteins in oocytes.  相似文献   

8.
《The Journal of cell biology》1994,127(6):1515-1526
From a panel of monoclonal antibodies raised against fractions of rat liver nuclear envelopes (NEs), we have identified an antibody, RL30, which reacts with novel nuclear pore complex (NPC) antigens that are not O-glycosylated. By immunofluorescence staining of cultured cells, RL30 reacts exclusively with the NE in a punctate pattern that largely coincides with that of identified NPC proteins. RL30 labels only the cytoplasmic surface of the NPC in immunogold electron microscopy, predominantly in peripheral regions nearby the cytoplasmic ring. In immunoblots of isolated rat liver NEs and cultured rat cells, RL30 recognizes a 265-kD band, as well as a series of 175-265-kD bands in rat liver NEs that are likely to be proteolytic products of p265. Sequencing of peptides from the 175- and 265-kD RL30 antigens of rat liver revealed that they are both closely related to human Tpr, a protein whose amino-terminal 150-250 amino acids appear in oncogenic fusions with the kinase domains of the met, trk, and raf protooncogenes. We found that in vitro translation of human Tpr mRNA yields a major 265-kD band. Considered together, these data indicate that the 265-kD RL30 antigen in the NPC is the rat homologue of Tpr. Interestingly, Tpr contains an exceptionally long predicted coiled coil domain (approximately 1600 amino acids). The localization and predicted structure of Tpr suggest that it is a component of the cytoplasmic fibrils of the NPC implicated in nuclear protein import. Immunofluorescence microscopy shows that during NPC reassembly at the end of mitosis, Tpr becomes concentrated at the NE significantly later than O-linked glycoproteins, including p62. This indicates that reassembly of the NPC after mitosis is a stepwise process, and that the Tpr-containing peripheral structures are assembled later than p62.  相似文献   

9.
To go beyond the current structural consensus model of the nuclear pore complex (NPC), we performed cryo-electron tomography of fully native NPCs from Xenopus oocyte nuclear envelopes (NEs). The cytoplasmic face of the NPC revealed distinct anchoring sites for the cytoplasmic filaments, whereas the nuclear face was topped with a massive distal ring positioned above the central pore with indications of the anchoring sites for the nuclear basket filaments and putative intranuclear filaments. The rather "spongy" central framework of the NPC was perforated by an elaborate channel and void system, and at the membrane pore interface it exhibited distinct "handles" protruding into the lumen of the NE. The most variable structural moiety of the NPC was a rather tenuous central plug partially obstructing the central pore. Its mobile character was documented by time-lapse atomic force microscopy. Taken together, the new insights we gained into NPC structure support the notion that the NPC acts as a constrained diffusion pore for molecules and particles without retention signal and as an affinity gate for signal-bearing cargoes.  相似文献   

10.
Tpr is a coiled-coil protein found near the nucleoplasmic side of the pore complex. Since neither the precise localization of Tpr nor its functions are well defined, we generated antibodies to three regions of Tpr to clarify these issues. Using light and EM immunolocalization, we determined that mammalian Tpr is concentrated within the nuclear basket of the pore complex in a distribution similar to Nup153 and Nup98. Antibody localization together with imaging of GFP-Tpr in living cells revealed that Tpr is in discrete foci inside the nucleus similar to several other nucleoporins but is not present in intranuclear filamentous networks (Zimowska et al., 1997) or in long filaments extending from the pore complex (Cordes et al., 1997) as proposed. Injection of anti-Tpr antibodies into mitotic cells resulted in depletion of Tpr from the nuclear envelope without loss of other pore complex basket proteins. Whereas nuclear import mediated by a basic amino acid signal was unaffected, nuclear export mediated by a leucine-rich signal was retarded significantly. Nuclear injection of anti-Tpr antibodies in interphase cells similarly yielded inhibition of protein export but not import. These results indicate that Tpr is a nucleoporin of the nuclear basket with a role in nuclear protein export.  相似文献   

11.
12.
Transport across the nuclear membranes occurs through the nuclear pore complex (NPC), and is mediated by soluble transport factors including Ran, a small GTPase that is generally GDP-bound during import and GTP-bound for export. The dynamic nature of the NPC structure suggests a possible active role for it in driving translocation. Here we show that RanGTP but not RanGDP causes alterations of NPC structure when injected into the cytoplasm of Xenopus oocytes, including compaction of the NPC and extension of the cytoplasmic filaments. RanGTP caused accumulation of nucleoplasmin-gold along the length of extended cytoplasmic filaments, whereas RanGDP caused accumulation around the cytoplasmic rim of the NPC. This suggests a possible role for Ran in altering the conformation of the cytoplasmic filaments during transport.  相似文献   

13.
Nuclear pore complexes (NPCs) facilitate selective transport of macromolecules across the nuclear envelope in interphase eukaryotic cells. NPCs are composed of roughly 30 different proteins (nucleoporins) of which about one third are characterized by the presence of phenylalanine-glycine (FG) repeat domains that allow the association of soluble nuclear transport receptors with the NPC. Two types of FG (FG/FxFG and FG/GLFG) domains are found in nucleoporins and Nup98 is the sole vertebrate nucleoporin harboring the GLFG-type repeats. By immuno-electron microscopy using isolated nuclei from Xenopus oocytes we show here the localization of distinct domains of Nup98. We examined the localization of the C- and N-terminal domain of Nup98 by immunogold-labeling using domain-specific antibodies against Nup98 and by expressing epitope tagged versions of Nup98. Our studies revealed that anchorage of Nup98 to NPCs through its C-terminal autoproteolytic domain occurs in the center of the NPC, whereas its N-terminal GLFG domain is more flexible and is detected at multiple locations within the NPC. Additionally, we have confirmed the central localization of Nup98 within the NPC using super resolution structured illumination fluorescence microscopy (SIM) to position Nup98 domains relative to markers of cytoplasmic filaments and the nuclear basket. Our data support the notion that Nup98 is a major determinant of the permeability barrier of NPCs.  相似文献   

14.
Function and assembly of nuclear pore complex proteins.   总被引:5,自引:0,他引:5  
Nuclear pore complexes (NPCs) are extremely elaborate structures that mediate the bidirectional movement of macromolecules between the nucleus and cytoplasm. The current view of NPC organization features a massive symmetrical framework that is embedded in the double membranes of the nuclear envelope. It embraces a central channel of as yet ill-defined structure but which may accommodate particles with diameters up to 26 nm provided that they bear specific import/export signals. Attached to both faces of the central framework are peripheral structures, short cytoplasmic filaments, and a nuclear basket assembly, which interact with molecules transiting the NPC. The mechanisms of assembly and the nature of NPC structural intermediates are still poorly understood. However, mutagenesis and expression studies have revealed discrete sequences within certain NPC proteins that are necessary and sufficient for their appropriate targeting. In addition, some details are emerging from observations on cells undergoing mitosis where the nuclear envelope is disassembled and its components, including NPC subunits, are dispersed throughout the mitotic cytoplasm. At the end of mitosis, all of these components are reutilized to form nuclear envelopes in the two daughter cells. To date, it has been possible to define a time course of postmitotic assembly for a group of NPC components (CAN/Nup214, Nup153, POM121, p62 and Tpr) relative to the integral inner nuclear membrane protein LAP2 and the NPC membrane glycoprotein gp210. Nup153, a dynamic component of the nuclear basket, associates with chromatin towards the end of anaphase coincident with, although independent of, the inner nuclear membrane protein, LAP2. Assembly of the remaining proteins follows that of the nuclear membranes and occurs in the sequence POM121, p62, CAN/Nup214 and gp210/Tpr. Since p62 remains as a complex with three other NPC proteins (p58, p54, p45) during mitosis, and CAN/Nup214 maintains a similar interaction with its partner, Nup84, the relative timing of assembly of these additional four proteins may also be inferred. These observations suggest that there is a sequential association of NPC proteins with chromosomes during nuclear envelope reformation and the recruitment of at least eight of these precedes that of gp210. These findings support a model in which it is POM121 rather than gp210 that defines initial membrane-associated NPC assembly intermediates and which may therefore represent an essential component of the central framework of the NPC.  相似文献   

15.
We have used immunocytochemistry and cross-immunoprecipitation analysis to demonstrate that Megator (Bx34 antigen), a Tpr ortholog in Drosophila with an extended coiled-coil domain, colocalizes with the putative spindle matrix proteins Skeletor and Chromator during mitosis. Analysis of P-element mutations in the Megator locus showed that Megator is an essential protein. During interphase Megator is localized to the nuclear rim and occupies the intranuclear space surrounding the chromosomes. However, during mitosis Megator reorganizes and aligns together with Skeletor and Chromator into a fusiform spindle structure. The Megator metaphase spindle persists in the absence of microtubule spindles, strongly implying that the existence of the Megator-defined spindle does not require polymerized microtubules. Deletion construct analysis in S2 cells indicates that the COOH-terminal part of Megator without the coiled-coil region was sufficient for both nuclear as well as spindle localization. In contrast, the NH2-terminal coiled-coil region remains in the cytoplasm; however, we show that it is capable of assembling into spherical structures. On the basis of these findings we propose that the COOH-terminal domain of Megator functions as a targeting and localization domain, whereas the NH2-terminal domain is responsible for forming polymers that may serve as a structural basis for the putative spindle matrix complex.  相似文献   

16.
Amassments of heterochromatin in somatic cells occur in close contact with the nuclear envelope (NE) but are gapped by channel‐ and cone‐like zones that appear largely free of heterochromatin and associated with the nuclear pore complexes (NPCs). To identify proteins involved in forming such heterochromatin exclusion zones (HEZs), we used a cell culture model in which chromatin condensation induced by poliovirus (PV) infection revealed HEZs resembling those in normal tissue cells. HEZ occurrence depended on the NPC‐associated protein Tpr and its large coiled coil‐forming domain. RNAi‐mediated loss of Tpr allowed condensing chromatin to occur all along the NE's nuclear surface, resulting in HEZs no longer being established and NPCs covered by heterochromatin. These results assign a central function to Tpr as a determinant of perinuclear organization, with a direct role in forming a morphologically distinct nuclear sub‐compartment and delimiting heterochromatin distribution.  相似文献   

17.
18.
Rad51 is the core component of the eukaryotic homologous recombination machinery and assembles into extended nucleoprotein filaments on DNA. To study the dynamic behavior of Rad51 we have developed a single-molecule assay that relies on a combination of hydrodynamic force and microscale diffusion barriers to align individual DNA molecules on the surface of a microfluidic sample chamber that is coated with a lipid bilayer. When visualized with total internal reflection fluorescence microscopy (TIRFM), these "molecular curtains" allow for the direct visualization of hundreds of individual DNA molecules. Using this approach, we have analyzed the binding of human Rad51 to single molecules of double-stranded DNA under a variety of different reaction conditions by monitoring the extension of the fluorescently labeled DNA, which coincides with assembly of the nucleoprotein filament. We have also generated several mutants in conserved regions of Rad51 implicated in DNA binding, and tested them for their ability to assemble into extended filaments. We show that proteins with mutations within the DNA-binding surface located on the N-terminal domain still retain the ability to form extended nucleoprotein filaments. Mutations in the L1 loop, which projects towards the central axis of the filament, completely abolish assembly of extended filaments. In contrast, most mutations within or near the L2 DNA-binding loop, which is also located near the central axis of the filament, do not affect the ability of the protein to assemble into extended filaments on double-stranded (ds)DNA. Taken together, these results demonstrate that the L1-loop plays a crucial role in the assembly of extended nucleoprotein filaments on dsDNA, but the N-terminal domain and the L2 DNA-binding loop have significantly less impact on this process. The results presented here also provide an important initial framework for beginning to study the biochemical behaviors of Rad51 nucleoprotein filaments using our novel experimental system.  相似文献   

19.
Key steps in mRNA export are the nuclear assembly of messenger ribonucleoprotein particles (mRNPs), the translocation of mRNPs through the nuclear pore complex (NPC), and the mRNP remodeling events at the cytoplasmic side of the NPC. Nup358/RanBP2 is a constituent of the cytoplasmic filaments of the NPC specific to higher eukaryotes and provides a multitude of binding sites for the nucleocytoplasmic transport machinery. Here, we present the crystal structure of the Nup358 N-terminal domain (NTD) at 0.95 Å resolution. The structure reveals an α-helical domain that harbors three central tetratricopeptide repeats (TPRs), flanked on each side by an additional solvating amphipathic α helix. Overall, the NTD adopts an unusual extended conformation that lacks the characteristic peptide-binding groove observed in canonical TPR domains. Strikingly, the vast majority of the NTD surface exhibits an evolutionarily conserved, positive electrostatic potential, and we demonstrate that the NTD possesses the capability to bind single-stranded RNA in solution. Together, these data suggest that the NTD contributes to mRNP remodeling events at the cytoplasmic face of the NPC.  相似文献   

20.
Nuclear export of mRNA in eukaryotic cells is mediated by soluble transport factors and components of the nuclear pore complex (NPC). The cytoplasmically oriented nuclear pore protein Nup159 plays a critical role in mRNA export through its conserved N-terminal domain (NTD). Here, we report the crystal structure of the Nup159 NTD, refined to 2.5 A. The structure reveals an unusually asymmetric seven-bladed beta-propeller that is structurally conserved throughout eukarya. Using structure-based conservation analysis, we have targeted specific surface residues for mutagenesis. Residue substitutions in a conserved loop of the NTD abolish in vitro binding to Dbp5, a DEAD box helicase required for mRNA export. In vivo, these mutations cause Dbp5 mislocalization and block mRNA export. These findings suggest that the Nup159 NTD functions in mRNA export as a binding platform, tethering shuttling Dbp5 molecules at the nuclear periphery and locally concentrating this mRNA remodeling factor at the cytoplasmic face of the NPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号