共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In situ denaturation of metaphase chromosomes with alkali results in a shift from green to yellow, orange, brown and red fluorescence with acridine orange, indicating increasing denaturation of chromosomal DNA. The kinetics and characteristics of denaturation are described. Mouse and Microtus agrestis chromosomes denature uniformly but human cells show sequential denaturation. With increasing concentrations of alkali, the secondary constrictions in chromosomes 1, 9 and 16 are the first, and the distal half of the Y chromosome the last, to become denatured. — Reassociation of chromosomal DNA occurs within seconds after the start of incubation in salt solution. Areas containing repetitious DNA, e.g. mouse centromeres, fluoresce much more strongly than other regions with acridine orange after prolonged reassociation. Since human and Microtus centromeric regions behave similarly, it is proposed that they, too, contain repetitious DNA. — Reassociation treatment leads to enhancement of bright quinacrine mustard fluorescence in regions already bright before treatment. Furthermore, regions containing repetitious DNA, e.g. the secondary constrictions in human chromosomes 1, 9 and 16, whose fluorescence is dull before treatment, turn bright after reassociation. — The methods of fluorescence analysis of mammalian chromosomes with acridine orange and quinacrine mustard permit the localization and study of different classes of chromosomal DNA. 相似文献
3.
4.
Reaction of quinacrine mustard with the acetylcholine receptor from Torpedo californica 总被引:4,自引:0,他引:4
Amines with local anesthetic activity are typically also noncompetitive inhibitors of the agonist-induced increase in cation permeability mediated by the nicotinic acetylcholine receptor. Quinacrine is such an agent, and we have synthesized tritiated quinacrine mustard, a derivative capable of reacting with nucleophiles. Quinacrine mustard was reacted with receptor-rich membrane from torpedo electric tissue, excess reagent was removed by partition into liposomes, and the modified receptor was extracted and reconstituted with exogenous phospholipid. After reaction of the native membrane with 10 microM quinacrine mustard for 5 min, binding of cobratoxin to the acetylcholine binding sites is inhibited 15%; in contrast, receptor-mediated 86Rb uptake in the reconstituted vesicles is inhibited 70%. When the reaction with quinacrine mustard is carried out in the presence of 10 microM carbamylcholine or 10 microM d-tubocurarine, there is no block of the acetylcholine binding sites; nevertheless, the inhibition of Rb uptake is greater than that resulting from reaction in the absence of acetylcholine binding site ligands. Conversely, when the reaction is carried out in the presence of either 100 microM quinacrine or 100 microM proadifen (also a potent noncompetitive inhibitor), either with or without carbamylcholine or d-tubocurarine, the inhibition of 86Rb uptake is about 70% smaller. Under the same conditions that we used in the functional studies, quinacrine mustard reacts with the four types of chains that constitute the receptor complex, alpha 2 beta gamma delta. The presence of the acetylcholine binding site ligands, however, results in increased reaction with the alpha and beta chains, while the presence of the noncompetitive inhibitors, with or without the acetylcholine binding site ligands, results in decreased reaction with the alpha and beta chains. We conclude that the alpha and beta chains contribute to one or more functionally significant binding sites for noncompetitively inhibiting amines. 相似文献
5.
6.
D Fukushi M Kuro-O M Shichiri Y Obara K Tsuchiya 《Cytogenetics and cell genetics》2001,92(3-4):254-263
The DNA of Apodemus argenteus was digested with DraI, and the resultant DraI fragment of highly repetitive DNA was isolated and analyzed by DNA filter hybridization, cloning, sequencing, and fluorescence in situ hybridization (FISH). Southern blot hybridization and nucleotide sequencing revealed that most of the DraI fragment consisted of a 230-bp repeating unit and contained no sex-chromosome-specific nucleotide sequences. The DraI fragment included the CENP-B box-like sequence, with a strong homology to the human CENP-B box sequence. FISH revealed that the DraI fragment was specific to all pericentromeric C-band-positive regions, as well as to the C-block of the X chromosome. No hybridization signals were obtained from A. speciosus, A. peninsulae peninsulae, A.p. giliacus, A. agrarius, A. sylvaticus, A. semotus, or Mus musculus when the DraI fragment was used as probe. Peptide nucleic acid (PNA)-FISH using the CENP-B box-like sequence in the DraI fragments as probe suggested that this nucleotide sequence was also specific to all pericentromeric C-heterochromatic regions of A. argenteus chromosomes. Zoo-blot hybridization using DraI-digested genomic DNA from three species of Apodemus (namely, A. argenteus, A. speciosus, and A. peninsulae) and from Mus musculus strongly suggested that the consensus DraI fragment contained nucleotide sequences that were species-specific for A. argenteus. These results also suggest that A. argenteus is phylogenetically distant from other Apodemus species examined, as well as the possibility that the DraI fragment might be related directly to the delayed quinacrine mustard fluorescence of many pericentromeric C-heterochromatic regions of the chromosomes in A. argenteus. 相似文献
7.
A karyotype analysis of a diploid inbred line of Petunia hybrida stained with aceto-orcein is given. Five of the seven pairs of chromosomes can be identified by their relative lengths and arm ratios. The two remaining pairs stained with quinacrine show different fluorescence patterns. 相似文献
8.
Summary A simple method was used to prepare cryostat-cut sections in which quinacrine-induced fluorescence could be seen by fluorescence microscopy. Such sections were used in preliminary studies of the distribution of this drug in mice. Micro-fluorimetry was used to quantify the fluorescence. The method may be of value in the detection of drugs in various fields. 相似文献
9.
10.
Cells plated immediately after irradiation on nutrient agar (immediate plating) exhibit a lower survival than cells which are kept under nongrowth conditions before plating (delayed plating). The difference between the survival curves obtained after immediate plating and delayed plating is considered to exhibit the cell's capacity to repair potentially lethal damage. In yeast evidence has been presented previously for the DNA double-strand break (DSB) as the molecular lesion involved in the repair of potentially lethal damage observed at the cellular level. Radiation-induced DSB are repaired in cells plated on nutrient agar, i.e., under growth conditions, as well as in cells kept under nongrowth conditions. In this paper DSB repair under growth and nongrowth conditions is studied with the help of the yeast mutant rad54-3 which is temperature conditional for DSB repair. It is shown that the extent of repair of potentially lethal damage can be varied by shifting the relative fractions of repair of DSB under growth conditions versus nongrowth conditions. Repair of DSB in cells plated on nutrient agar is promoted when glucose is substituted by Na-succinate as an energy source. As a result the immediate plating survival curve approaches the delayed plating survival curve, thus reducing the operationally defined repair of potentially lethal damage. We show that this reduced potentially lethal damage repair is caused, however, by a higher amount of DSB repair in cells immediately plated on succinate agar as compared to glucose agar. 相似文献
11.
Isolated hamster lungs were labelled with 14C-arachidonic acid. When the lungs were ventillated with a respirator only a small amount of radioactivity was released to the perfusion effluent. This release was not changed significantly by pulmonary infusion of quicacrine (0.5 mM), a known inhibitor of phospholipase A2. After the perfusion about 75% of the radioactivity in the lungs was in phospholipids, mainly in phosphatidylcholine, phosphatidylethanolamine and phosphatidylinostil and to a lesser degree in phosphatidylserine and phosphatidic acid. About one fourth of the radioactivity was in neutral lipids (tri- and diacylglycerols) and as free unmetabolized 14C-arachiodonic acid. Pulmonary infusion of quinacrine increased the amount of radioactivity in diacylglycerols and phosphatidylinositol but had no effect on that in phosphatidylcholine, phosphatidylserine, phosphatidic acid and triacylglycerols. The amount of radioactivity in phosphatidylethanolamine was decreased by quinacrine and increased in the vicinity of an unidentified phospholipid-quinacrine complex. The present study indicates that the distribution of 14C-arachidonic acid in hamster lung lipids is sensitive to quinacrine. The detected changes can, however, not be explained by an overall inhibition of phospholipase A2 activities. 相似文献
12.
M F Hipkins 《Biochimica et biophysica acta》1978,502(1):161-168
1. The decay of delayed fluorescence from chloroplasts blocked with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and uncoupled with gramicidin has been measured in the time range 0.75--45 ms by use of a laser phosphoroscope. 2. The decays have been analysed as the sum of three first-order components of approximate half-lives 0.2, 2.5 and 300 ms by a computer-assisted least-squares fit procedure. 3. The prompt fluorescence yield of the chloroplasts was manipulated by changing the cation concentration of the chloroplast-suspending medium. 4. Analysis of the concentration dependence of the components of the delayed fluorescence decay and of the prompt fluorescence inductions indicates that the emission yield of the intermediate (tau approximately 2.5 ms) component of the decay is equal to the fluorescence yield of a Photosystem II photosynthetic unit with an open trap, and that for the slow (tau approximately 300 ms) component the emission yield is equal to the total Photosystem II prompt fluorescence yield. 5. It is concluded that the delayed fluorescence yield in the time range studied is a complex function of time, which may be due to there being different mechanisms leading to delayed fluorescence production at short and long times after cessation of illumination. 相似文献
13.
D Frankenberg M Frankenberg-Schwager R Harbich 《International journal of radiation biology and related studies in physics, chemistry, and medicine》1984,46(5):541-553
DNA double-strand breaks are the molecular lesions the repair of which leads to the reappearance of the shoulder observed in split-dose experiments. This conclusion is based on results obtained with the help of a diploid yeast mutant rad 54-3 which is temperature-conditional for the repair of DNA double-strand breaks. Two repair steps must be met to yield the reappearance of the shoulder on a split-dose survival curve: the repair of double-strand breaks during the interval between two doses and on the nutrient agar plate after the second dose. In yeast lethality may be attributable to either an unrepaired double-strand break (i.e. a double-strand break is a potentially lethal lesion) or to the interaction of two double-strand breaks (misrepair of double-strand breaks). Evidence is presented that the two cellular phenomena of liquid holding recovery (repair of potentially lethal damage) and of split-dose recovery (repair of sublethal damage) are based on the repair of the same molecular lesion, the DNA double-strand break. 相似文献
14.
Martin E Budd Igor A Antoshechkin Clara Reis Barbara J Wold Judith L Campbell 《Cell cycle (Georgetown, Tex.)》2011,10(10):1690-1698
Dna2 is a dual polarity exo/endonuclease, and 5′ to 3′ DNA helicase involved in Okazaki Fragment Processing (OFP) and Double-Strand Break (DSB) Repair. In yeast, DNA2 is an essential gene, as expected for a DNA replication protein. Suppression of the lethality of dna2Δ mutants has been found to occur by two mechanisms: overexpression of RAD27scFEN1, encoding a 5′ to 3′ exo/endo nuclease that processes Okazaki fragments (OFs) for ligation, or deletion of PIF1, a 5′ to 3′ helicase involved in mitochondrial recombination, telomerase inhibition and OFP. Mapping of a novel, spontaneously arising suppressor of dna2Δ now reveals that mutation of rad9 and double mutation of rad9 mrc1 can also suppress the lethality of dna2Δ mutants. Interaction of dna2Δ and DNA damage checkpoint mutations provides insight as to why dna2Δ is lethal but rad27Δ is not, even though evidence shows that Rad27ScFEN1 processes most of the Okazaki fragments, while Dna2 processes only a subset.Key words: yeast, RAD27, RAD9, RAD53, Okazaki fragment processing, DNA replication, exo1 相似文献
15.
《Cell cycle (Georgetown, Tex.)》2013,12(10):1690-1698
Dna2 is a dual polarity exo/endonuclease, and 5' to 3' DNA helicase involved in Okazaki Fragment Processing (OFP) and Double-Strand Break (DSB) Repair. In yeast, DNA2 is an essential gene, as expected for a DNA replication protein. Suppression of the lethality of dna2Δ mutants has been found to occur by two mechanisms: overexpression of RAD27scFEN1, encoding a 5' to 3' exo/endo nuclease that processes Okazaki fragments (OFs) for ligation, or deletion of PIF1, a 5' to 3' helicase involved in mitochondrial recombination, telomerase inhibition and OFP. Mapping of a novel, spontaneously arising suppressor of dna2Δ now reveals that mutation of rad9 and double mutation of rad9 mrc1 can also suppress the lethality of dna2Δ mutants. Interaction of dna2Δ and DNA damage checkpoint mutations provides insight as to why dna2Δ is lethal but rad27Δ is not, even though evidence shows that Rad27ScFEN1 processes most of the Okazaki fragments, while Dna2 processes only a subset. 相似文献
16.
Quinone-dependent delayed fluorescence from the reaction center of photosynthetic bacteria
下载免费PDF全文

Millisecond delayed fluorescence from the isolated reaction center of photosynthetic bacteria Rhodobacter sphaeroides was measured after single saturating flash excitation and was explained by thermal repopulation of the excited bacteriochlorophyll dimer from lower lying charge separated states. Three exponential components (fastest, fast, and slow) were found with lifetimes of 1.5, 102, and 865 ms and quantum yields of 6.4 x 10(-9), 2.2 x 10(-9), and 2.6 x 10(-9) (pH 8.0), respectively. While the two latter phases could be related to transient absorption changes, the fastest one could not. The fastest component, dominating when the primary quinone was prereduced, might be due to a small fraction of long-lived triplet states of the radical pair and/or the dimer. The fast phase observed in the absence of the secondary quinone, was sensitive to pH, temperature, and the chemical nature of the primary quinone. The standard free energy of the primary stable charge pair relative to that of the excited dimer was -910 +/- 20 meV at pH 8 and with native ubiquinone, and it showed characteristic changes upon pH and quinone replacement. The interaction energy ( approximately 50 meV) between the cluster of the protonatable groups around GluL212 and the primary semiquinone provides evidence for functional linkage between the two quinone binding pockets. An empirical relationship was found between the in situ free energy of the primary quinone and the rate of charge recombination, with practical importance in the estimation of the free energy levels from the easily available lifetime of the charge recombination. The ratio of the slow and fast components could be used to determine the pH dependence of the free energy level of the secondary stable charge pair relative to that of the excited dimer. 相似文献
17.
Isolated hamster lungs were labelled with 14C-arachidonic acid. When the lungs were ventilated with a respirator only a small amount of radioactivity was released to the perfusion effluent. This release was not changed significantly by pulmonary infusion of quinacrine (0.5 mM), a known inhibitor of phospholipase A2. After the perfusion about 75% of the radioactivity in the lungs was in phospholipids, mainly in phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol and to a lesser degree in phosphatidylserine and phosphatidic acid. About one fourth of the radioactivity was in neutral lipids (tri- and diacylglycerols) and as free unmetabolized 14C-arachidonic acid. Pulmonary infusion of quinacrine increased the amount of radioactivity in diacylglycerols and phosphatidylinositol but had no effect on that in phosphatidylcholine, phosphatidylserine, phosphatidic acid and triacylglycerols. The amount of radioactivity in phosphatidylethanolamine was decreased by quinacrine and increased in the vicinity of an unidentified phospholipid-quinacrine complex. The present study indicates that the distribution of 14C-arachidonic acid in hamster lung lipids is sensitive to quinacrine. The detected changes can, however, not be explained by an overall inhibition of phospholipase A2 activities. 相似文献
18.
19.
Dipl.-Phys. A. Hissung H. Dertinger G. Heinrich 《Radiation and environmental biophysics》1975,12(1):5-12
It is shown by UV absorption and absolute fluorescence spectroscopy of solutions containing both DNA and quinacrine that the components experience mutual radio-protection due to scavenging of water radicals. From measurements at different ionic strengths it is inferred that quinacrine bound to DNA is more efficiently protected than the free compound. Furthermore, release of bound quinacrine from DNA is observed at higher doses. 相似文献
20.
Optical studies of complexes of quinacrine with DNA and chromatin: implications for the fluorescence of cytological chromosome preparations 总被引:4,自引:1,他引:4
The fluorescence and circular dichroism of quinacrine complexed with nucleic acids and chromatin were measured to estimate the relative magnitudes of factors influencing the fluorescence banding patterns of chromosomes stained with quinacrine or quinacrine mustard. DNA base composition can influence quinacrine fluorescence in at least two ways. The major effect, evident at low ratios of quinacrine to DNA, is a quenching of dye fluorescence, correlating with G-C composition. This may occur largely prior to relaxation of excited dye molecules. At higher dye/DNA saturations, which might exist in cytological chromosome preparations stained with high concentrations of quinacrine, energy transfer between dye molecules converts dyes bound near G-C base pairs into energy sinks. In contrast to its influence on quinacrine fluorescence, DNA base composition has very little effect on either quinacrine binding affinity or the circular dichroism of bound quinacrine molecules. The synthetic polynucleotides poly(dA-dT) and poly(dA)-poly(dT) have a similar effect on quinacrine fluorescence, but differ markedly in their affinity for quinacrine and in the circular dichroism changes associated with quinacrine binding. Quinacrine fluorescence intensity and lifetime are slightly less when bound to calf thymus chromatin than when bound to calf thymus DNA, and minor differences in circular dichroism between these complexes are observed. Chromosomal proteins probably affect the fluorescence of chromosomes stained with quinacrine, although this effect appears to be much less than that due to variations in DNA base composition. The fluorescence of cytological chromosome preparations may also be influenced by fixation effects and macroscopic variations in chromosome coiling. 相似文献