首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In adult mammals, estrogen regulates ovarian function, and estrogen receptor (ER) is expressed in granulosa cells of antral follicles of the adult baboon ovary. Because the foundation of adult ovarian function is established in utero, the present study determined whether ERalpha and/or ERbeta were expressed in fetal ovaries obtained on Days 100 (n = 3) and 165-181 (n = 5) of baboon gestation (term = Day 184). On Day 100, ERalpha protein was detected by immunocytochemistry in surface epithelium and mesenchymal-epithelial cells but not oocytes in germ cell cords. ERbeta protein was also detected by immunocytochemistry on Day 100 of gestation and was abundantly expressed in mesenchymal-epithelial cells in germ cell cords, lightly expressed in the germ cells, but was not detected in the surface epithelium. On Days 165-180 of gestation, ERalpha expression was still intense in the surface epithelium, in mesenchymal-epithelial cells throughout the cortex, and in nests of cells between follicles. ERalpha expression was lighter in granulosa cells and was not observed in all granulosa cells, particularly in follicles close to the cortex. In contrast, ERbeta expression was most intense in granulosa cells, especially in flattened granulosa cells, was weaker in mesenchymal-epithelial cells and nests of cells between follicles, and was absent in the surface epithelium. Using an antibody to the carboxy terminal of human ERbeta, ERbeta protein was also detected by Western immunoblot with molecular sizes of 55 and 63 kDa on Day 100 and primarily 55 kDa on Day 180. The mRNAs for ERalpha and ERbeta were also detected by Northern blot analysis in the baboon fetal ovary. These results are the first to establish that the ERalpha and ERbeta mRNAs and proteins are expressed and exhibit changes in localization in the primate fetal ovary between mid and late gestation. Because placental estrogen production and secretion into the baboon fetus increases markedly during advancing pregnancy, we propose that estrogen plays an integral role in programming fetal ovarian development in the primate.  相似文献   

3.
4.
The uterine luteal phase in T. vulpecula is not dependent upon the secretions of the CL throughout its duration. Ablation of the CL or ovariectomy after Day 7 of the 26-day oestrous cycle does not result in the termination of the uterine secretory phase. The dependence of the luteal phase on the secretions of the CL is demonstrated by ablation of the CL or ovariectomy on Days 2, 4, 8, 12 and 24 of the oestrous cycle. Ablation of the CL before Day 8 resulted in the inhibition of the impending luteal phase, and the commencement of a follicular phase resulting in oestrus 8 to 9 days later. Removal of the CL or ovariectomy on Days 8 or 12 does not completely inhibit the uterine luteal phase since sufficient precursor of uterine milk is stored in the uterine basal glandular epithelium, thus enabling the endometrium to maintain the secretion of uterine milk.  相似文献   

5.
6.
7.
8.
Outbred CD-1 mice were treated neonatally on Days 1-5 with the phytoestrogen, genistein (1, 10, or 100 micro g per pup per day), and ovaries were collected on Days 5, 12, and 19. Ribonuclease protection assay analysis of ovarian mRNA showed that estrogen receptor beta (ERbeta) predominated over ERalpha in controls and increased with age. Genistein treatment did not alter ERbeta expression, however, ERalpha expression was higher on Days 5 and 12. ERbeta was immunolocalized in granulosa cells, whereas ERalpha was immunolocalized in interstitial and thecal cells. Genistein treatment caused a dramatic increase in ERalpha in granulosa cells. Genistein-treated ERbeta knockout mice showed a similar induction of ERalpha, which is seen in CD-1 mice, suggesting that ERbeta does not mediate this effect. Similar ERalpha induction in granulosa cells was seen in CD-1 mice treated with lavendustin A, a tyrosine kinase inhibitor that has no known estrogenic actions, which suggests that this property of genistein may be responsible. As a functional analysis, genistein-treated mice were superovulated and the number of oocytes was counted. A statistically significant increase in the number of ovulated oocytes was observed with the lowest dose, whereas a decrease was observed with the two higher doses. This increase in ovulatory capacity with the low dose coincided with higher ERalpha expression. Histological evaluations on Day 19 revealed a dose-related increase in multioocyte follicles (MOFs) in genistein-treated mice. Tyrosine kinase inhibition was apparently not responsible for MOFs because they were not present in mice that had been treated with lavendustin; however, ERbeta must play a role, because mice lacking ERbeta showed no MOFs. These data taken together demonstrate alterations in the ovary following neonatal exposure to genistein. Given that human infants are exposed to high levels of genistein in soy-based foods, this study indicates that the effects of such exposure on the developing reproductive tract warrant further investigation.  相似文献   

9.
10.
11.
We conducted a quantitative analysis of ERalpha and ERbeta mRNA expression in normal human endometrium throughout the menstrual cycle in regular menstruating premenopausal women, taking advantage of this real-time PCR assay. Endometrial dating was determined from the histology of the endometrium and classified into: proliferative endometrium and secretory endometrium. Both ERalpha and ERbeta mRNA expression were detected in all endometrial samples at both proliferative and secretion phase. However ERalpha mRNA expression level was higher than that of ERbeta specially during proliferative phase. These results suggest that estrogenic effects occur predominantly through ERalpha than ERbeta.  相似文献   

12.
13.
14.
15.
Maternal recognition of pregnancy in the cow requires successful signaling by the conceptus to block luteolysis. Conceptus growth and function depend on an optimal uterine environment, regulated by luteal progesterone. The objective of this study was to test strategies to optimize luteal function, as well as prevent a dominant follicle from initiating luteolysis. Nelore (Bos taurus indicus) beef cows (n=40) were submitted to a GnRH/PGF(2alpha)/GnRH protocol. Cows that ovulated from a dominant ovarian follicle (ovulation=Day 0) were allocated to receive: no additional treatment (G(C); n=7); 3000IU of hCG on Day 5 (G(hCG); n=5); 5mg of estradiol-17beta on Day 12 (G(E2); n=6); or 3000IU of hCG on Day 5 and 5mg of estradiol-17beta on Day 12 (G(hCG/E2); n=5). Ultrasonographic imaging of the ovaries, assessment of plasma progesterone concentration, and detection of estrus were done daily from Day 5 to the day of subsequent ovulation. Treatment with hCG induced an accessory CL, increased CL volume, and plasma progesterone concentration throughout the luteal phase (P<0.01). Estradiol-17beta induced atresia and recruitment of a new wave of follicular growth; it eliminated a potentially estrogen-active, growing ovarian follicle within the critical period for maternal recognition of pregnancy, but it also hastened luteolysis (Days 16 or 17 vs. Days 18 or 19 in non-treated cows). In conclusion, the approaches tested enhanced luteal function (hCG) and altered ovarian follicular dynamics (estradiol-17beta), but were unable to extend the life-span of the CL in Nelore cows.  相似文献   

16.
17.
Thirty 2 yr old Brangus heifers were randomly assigned to 1 of 3 dietary treatments: Control, 0 g of free gossypol (FG) per head per day (FGHD) from corn and soybean meal (SBM); 5 g of FGHD from cottonseed meal (CSM); and 15 g of FGHD from whole cottonseed (WCS). Blood samples were collected weekly for serum progesterone (P(4)) and later quantified by RIA. Whole blood was collected on Days 1, 28, 42, 56 and 70 for erythrocyte fragility (EF) analysis. Following 65 d on dietary treatments and estrus detection, the heifers received bovine-FSH (bFSH) once daily on Days 10, 11 and 12 postestrus, and PGF(2alpha) on Day 12 postestrus. Fifteen of the thirty heifers were randomly selected, and 12 h following PGF(2alpha), the ovaries were removed and follicular diameters, ovarian weight and stromal weights were recorded. Follicular fluid was analyzed for steroid content by RIA. The remaining fifteen heifers were artificially inseminated. Embryos were recovered non-surgically on Day 7 postestrus and graded, and the recovery efficiencies were calculated. Following embryo collection, both ovaries were removed, the number of CLs was recorded, and CL P(4) content was determined by RIA. By Day 42 of treatment, heifers receiving CSM had elevated (P < 0.04) EF compared with the Controls, and remained elevated above that of Controls throughout the study. At Day 70, the CSM heifers tended to have higher (P < 0.07) EF than the WCS group, which in turn tended to be higher (P < 0.06) than the Controls. The Control and CSM heifers gained weight during the 70 d treatment period, while heifers consuming WCS lost weight (P < 0.05). Ovarian and stromal weights did not differ (P > 0.10) among treatment groups. Heifers receiving CSM had fewer (P < 0.05) follicles > 5 mm than WCS or Control heifers. Follicular fluid weights and steroid content did not differ (P > 0.10) among treatments. Both CL weight and the number of CLs per heifer were similar (P > 0.10) among treatments. Heifers receiving CSM or WCS had a higher (P < 0.003) CL P(4) content per gram of CL tissue than the Controls. Progesterone content per CL was greater in WCS heifers (P < 0.003) than in CSM heifers, while both the CSM and WCS heifers had a higher CL P(4) content than the Control heifers. Weekly and Day 7 postestrus serum concentrations of P(4) were similar (P > 0.10) among treatments. The number of embryos recovered, number of degenerated embryos, embryo grades and recovery efficiencies were not affected (P > 0.10) by dietary treatments. To standardize heifers relative to the number of degenerated embryos, the percentage of degenerated embryos recovered was calculated and tended to be greater (P < 0.06) in heifers consuming CSM than in either the Control or WCS groups. While most ovarian, follicular and embryo characteristics were not affected by dietary free gossypol, these results suggest that differences in the availability of free gossypol and/or dietary components between CSM and WCS may influence weight gain, CL P(4) content and embryo viability.  相似文献   

18.
19.
Ewes were treated with exogenous follicle-stimulating hormone (FSH) and oestrus was synchronized using either a dual prostaglandin F-2 alpha (PGF-2 alpha) injection regimen or pessaries impregnated with medroxy progesterone acetate (MAP). Natural cycling ewes served as controls. After oestrus or AI (Day 0), corpora lutea (CL) were enucleated surgically from the left and right ovaries on Days 3 and 6, respectively. The incidence of premature luteolysis was related (P less than 0.05) to PGF-2 alpha treatment and occurred in 7 of 8 ewes compared with 0 of 4 controls and 1 of 8 MAP-exposed females. Sheep with regressing CL had lower circulating and intraluteal progesterone concentrations and fewer total and small dissociated luteal cells on Day 3 than gonadotrophin-treated counterparts with normal CL. Progesterone concentration in the serum and luteal tissue was higher (P less than 0.05) in gonadotrophin-treated ewes with normal CL than in the controls; but luteinizing hormone (LH) receptors/cell were not different on Days 3 and 6. There were no apparent differences in the temporal patterns of circulating oestradiol-17 beta, FSH and LH. High progesterone in gonadotrophin-treated ewes with normal CL coincided with an increase in total luteal mass and numbers of cells, which were primarily reflected in more small luteal cells than in control ewes. Gonadotrophin-treated ewes with regressing CL on Day 3 tended (P less than 0.10) to have fewer small luteal cells and fewer (P less than 0.05) low-affinity PGF-2 alpha binding sites than sheep with normal CL. By Day 6, luteal integrity and cell viability was absent in ewes with prematurely regressed CL. These data demonstrate that (i) the incidence of premature luteal regression is highly correlated with the use of PGF-2 alpha; (ii) this abnormal luteal tissue is functionally competent for 2-3 days after ovulation, but deteriorates rapidly thereafter and (iii) luteal-dysfunctioning ewes experience a reduction in numbers of small luteal cells without a significant change in luteal mass by Day 3 and, overall, have fewer low-affinity PGF-2 alpha binding sites.  相似文献   

20.
Two experiments were designed to determine the effect of purified ovulation inducing factor (OIF) on ovarian function in cattle. In Experiment 1, prepubertal heifers (n = 11 per group) were treated on Day 5 (Day 0 = day of follicular wave emergence) of the follicular wave with an intramuscular dose of saline (1 mL), GnRH (100 μg), or purified OIF (1 mg/100 kg body weight). Ovulation occurred in 9/11 heifers treated with GnRH, and 1/11 heifers in each of the OIF- and saline-treated groups (P < 0.05). Compared to saline-treated controls, OIF treatment was associated with a smaller dominant follicle diameter (P < 0.01), a rise in plasma FSH concentration (P < 0.1), and earlier emergence of the next follicular wave (P < 0.05). In Experiment 2, sexually mature heifers were given either GnRH or purified OIF on Days 3, 6 or 9 of the first follicular wave (i.e., early growing, early static, or late static phase of the dominant follicle; n = 5 per group per day), or were untreated (n = 10). In heifers treated with OIF on Day 6, the dominant follicle diameter profile tended to be smaller than in controls, and was associated with a rise (P < 0.05) in plasma FSH concentrations. A similar rise in FSH was detected after OIF treatment on Day 9. Compared to untreated controls, treatment with OIF and GnRH was associated with a larger CL diameter (Days 3 and 6 groups; P < 0.05) and a greater concentration of plasma progesterone (Days 6 and 9 groups; P < 0.05). Treatment with purified OIF did not induce ovulation in heifers, but hastened new follicular wave emergence in prepubertal heifers, influenced follicular dynamics in a phase-specific manner in mature heifers, and was luteotrophic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号