首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plateau in muscle blood flow during prolonged exercise in miniature swine   总被引:1,自引:0,他引:1  
Cardiovascular, metabolic, and thermoregulatory responses were studied in eight male miniature swine during a prolonged treadmill run. Each animal underwent 8-10 wk of exercise training, thoracic surgery, and 3 wk of retraining before the experimental run. This regimen enabled the animals to run at 65% of the heart rate range (210-220 beats/min) for approximately 100 min. Skin wetting and a fan were used to cool the pigs during the run. Regional blood flow was significantly altered with the onset of exercise; however, hindlimb muscle and total gastrointestinal blood flow were unchanged throughout the exercise period. Compared with 5-min values, heart rate and cardiac output were significantly elevated by 17 beats/min and 31 ml.min-1.kg-1 at 60 min and by 20 beats/min and 33 ml.min-1.kg-1 at end exercise, respectively. Core temperatures increased between 5 and 30 min of exercise (39.4 vs. 39.9 degrees C) but then remained unchanged to the end of exercise. Mean arterial pressure, O2 consumption, and blood lactate did not change during the exercise bout. These data indicate that limiting increases in core temperature during prolonged exercise was associated with a plateau in active muscle blood flow.  相似文献   

2.
Mean arterial pressure (Pa), heart rate, cardiac output (Q), and Q distribution (with radiolabeled microspheres) were measured in miniature swine as they ran at high levels on a motor-driven treadmill. Each animal ran on two occasions: once during exercise at maximal O2 uptake (VO2max) and once at an intensity estimated to require approximately 115% VO2max. The purpose was to assess these cardiovascular variables to determine whether the calculated resistance to blood flow during supramaximal exercise was different from that during maximal exercise. A total of 114 tissues/organs were dissected for blood flow analysis. Pa and Q were unaltered between the two exercise conditions. Blood flow to all but one of the 62 skeletal muscles sampled was unchanged between conditions as were the blood flows to the visceral organs and brain. The results demonstrate that vascular resistance was constant in all these tissues between maximal and supramaximal exercise intensities. Elevated blood flows were measured in 7 of the 11 coronary sites sampled. Calculated resistance to blood flow indicated that a decrease in resistance occurred in most of the samples having elevated blood flow. Because heart rate was elevated during the supramaximal exercise, the increase in blood flow was probably in response to the greater myocardial work and concomitant elevation in O2 demand. In summary, it was shown that Pa, Q, and Q distribution in most tissues remained unchanged during exercise at intensities above VO2max. Thus a precise matching occurs between the increasingly powerful vasoconstrictor drive initiated by the sympathetic nervous system and the elevated local vasodilatory drive responding to the greater O2 demand during the supramaximal exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We examined the relationship between changes in cardiorespiratory and cerebrovascular function in 14 healthy volunteers with and without hypoxia [arterial O(2) saturation (Sa(O(2))) approximately 80%] at rest and during 60-70% maximal oxygen uptake steady-state cycling exercise. During all procedures, ventilation, end-tidal gases, heart rate (HR), arterial blood pressure (BP; Finometer) cardiac output (Modelflow), muscle and cerebral oxygenation (near-infrared spectroscopy), and middle cerebral artery blood flow velocity (MCAV; transcranial Doppler ultrasound) were measured continuously. The effect of hypoxia on dynamic cerebral autoregulation was assessed with transfer function gain and phase shift in mean BP and MCAV. At rest, hypoxia resulted in increases in ventilation, progressive hypocapnia, and general sympathoexcitation (i.e., elevated HR and cardiac output); these responses were more marked during hypoxic exercise (P < 0.05 vs. rest) and were also reflected in elevation of the slopes of the linear regressions of ventilation, HR, and cardiac output with Sa(O(2)) (P < 0.05 vs. rest). MCAV was maintained during hypoxic exercise, despite marked hypocapnia (44.1 +/- 2.9 to 36.3 +/- 4.2 Torr; P < 0.05). Conversely, hypoxia both at rest and during exercise decreased cerebral oxygenation compared with muscle. The low-frequency phase between MCAV and mean BP was lowered during hypoxic exercise, indicating impairment in cerebral autoregulation. These data indicate that increases in cerebral neurogenic activity and/or sympathoexcitation during hypoxic exercise can potentially outbalance the hypocapnia-induced lowering of MCAV. Despite maintaining MCAV, such hypoxic exercise can potentially compromise cerebral autoregulation and oxygenation.  相似文献   

4.
Distribution of muscle blood flow has not been measured in man during prolonged exercise, but progressive elevations in skin flow coupled with constant cardiac output (QT) have suggested muscle blood flow may be compromised. However, previous experiments with rats demonstrated progressive increases in muscle blood flow over time during prolonged submaximal exercise. The present study was performed to study muscle blood flow in miniature swine during long-term exercise to shed light on this apparent anomaly. QT and distribution of QT were studied with radiolabeled microspheres while pigs ran on a level treadmill at a speed (10.5 km/h) requiring 71 +/- 4% of maximal O2 consumption (VO2 max). QT increased 23% from the 5th to the 30th min of exercise, whereas total skeletal muscle flow increased by 49%. Increases in flow in the muscles resulted from decreased resistance, since mean arterial pressure declined over this time period (-7%). In addition, the proportional increases in muscle flow were similar within synergistic muscle groups independent of fiber type composition (e.g., elbow extensors: 59-78%; elbow flexors: 26-40%). The factor that limited continued exercise appeared to be body temperature. Colonic temperature rose in linear fashion over time; the animals became exhausted at approximately 42 degrees C. These flow data are similar to previous findings in rats and indicate that during prolonged treadmill locomotion in quadrupedal animals muscle blood flow increases over time to near maximal levels.  相似文献   

5.
We investigated the effect of muscle metaboreflex activation on left circumflex coronary blood flow (CBF) and vascular conductance (CVC) in conscious, chronically instrumented dogs during treadmill exercise ranging from mild to severe workloads. Metaboreflex responses were also observed during mild exercise with constant heart rate (HR) of 225 beats/min and beta(1)-adrenergic receptor blockade to attenuate the substantial reflex increases in cardiac work. The muscle metaboreflex was activated via graded partial occlusion of hindlimb blood flow. During mild exercise, with muscle metaboreflex activation, hindlimb ischemia elicited significant reflex increases in mean arterial pressure (MAP), HR, and cardiac output (CO) (+39.0 +/- 5.2 mmHg, +29.9 +/- 7.7 beats/min, and +2.0 +/- 0.4 l/min, respectively; all changes, P < 0.05). CBF increased from 51.9 +/- 4.3 to 88.5 +/- 6.6 ml/min, (P < 0.05), whereas no significant change in CVC occurred (0.56 +/- 0.06 vs. 0.59 +/- 0.05 ml. min(-1). mmHg(-1); P > 0.05). Similar responses were observed during moderate exercise. In contrast, with metaboreflex activation during severe exercise, no further increases in CO or HR occurred, the increases in MAP and CBF were attenuated, and a significant reduction in CVC was observed (1.00 +/- 0.12 vs. 0.90 +/- 0.13 ml. min(-1). mmHg(-1); P < 0.05). Similarly, when the metaboreflex was activated during mild exercise with the rise in cardiac work lessened (via constant HR and beta(1)-blockade), no increase in CO occurred, the MAP and CBF responses were attenuated (+15.6 +/- 4.5 mmHg, +8.3 +/- 2 ml/min), and CVC significantly decreased from 0.63 +/- 0.11 to 0.53 +/- 0.10 ml. min(-1). mmHg(-1). We conclude that the muscle metaboreflex induced increases in sympathetic nerve activity to the heart functionally vasoconstricts the coronary vasculature.  相似文献   

6.
We evaluated whether the increase in blood lactate with intense exercise is influenced by a low hepatosplanchnic blood flow as assessed by indocyanine green dye elimination and blood sampling from an artery and the hepatic vein in eight men. The hepatosplanchnic blood flow decreased from a resting value of 1.6 +/- 0.1 to 0.7 +/- 0.1 (SE) l/min during exercise. Yet the hepatosplanchnic O2 uptake increased from 67 +/- 3 to 93 +/- 13 ml/min, and the output of glucose increased from 1.1 +/- 0.1 to 2.1 +/- 0.3 mmol/min (P < 0.05). Even at the lowest hepatosplanchnic venous hemoglobin O2 saturation during exercise of 6%, the average concentration of glucose in arterial blood was maintained close to the resting level (5.2 +/- 0.2 vs. 5.5 +/- 0.2 mmol/l), whereas the difference between arterial and hepatic venous blood glucose increased to a maximum of 22 mmol/l. In arterial blood, the concentration of lactate increased from 1.1 +/- 0.2 to 6.0 +/- 1.0 mmol/l, and the hepatosplanchnic uptake of lactate was elevated from 0.4 +/- 0.06 to 1.0 +/- 0.05 mmol/min during exercise (P < 0.05). However, when the hepatosplanchnic venous hemoglobin O2 saturation became low, the arterial and hepatosplanchnic venous blood lactate difference approached zero. Even with a marked reduction in its blood flow, exercise did not challenge the ability of the liver to maintain blood glucose homeostasis. However, it appeared that the contribution of the Cori cycle decreased, and the accumulation of lactate in blood became influenced by the reduced hepatosplanchnic blood flow.  相似文献   

7.
Eight exercise-trained miniature swine were studied during prolonged treadmill runs (100 min) under fasting and preexercise feeding conditions. Each animal ran at identical external work loads that corresponded to 65% of the heart rate reserve (210-220 beats/min) for the two exercise bouts. Cardiac outputs and stroke volumes were higher and heart rates lower for fed than for fasting runs (P less than 0.05). Preexercise feeding did not alter oxygen consumption, core temperature, mean arterial pressure, and arterial-mixed venous oxygen difference during prolonged exercise; however, mixed venous lactate concentration was lower at end exercise than during fasting conditions (1.2 vs. 2.6 mM, P less than 0.05). Microsphere measurements of regional blood flow revealed significantly higher total gastrointestinal flow (23%) for fed than for fasting conditions. Throughout the exercise bout, blood flow to the biceps femoris, semitendinosus, and tibialis anterior muscles was lower in fed than in fasted animals (P less than 0.05). Combined hindlimb muscle blood flow averaged 15 ml.min-1.100 g-1 (18%, P less than 0.05) lower under feeding than fasting run conditions. These findings provide further evidence that cardiovascular reflexes originate in the gut after feeding to increase cardiac output and redistribute a portion of the blood flow away from active muscle to the gastrointestinal tract during prolonged exercise.  相似文献   

8.
In an effort to examine the effects of maternal exercise on the fetus we measured maternal and fetal temperatures and blood gases and calculated uterine O2 consumption in response to three different treadmill exercise regimens in 12 chronically catheterized near-term sheep. We also measured fetal catecholamine concentrations, heart rate, blood pressure, cardiac output, blood flow distribution, blood volume, and placental diffusing capacity. Maternal and fetal temperatures increased a mean maximum of 1.5 +/- 0.5 (SE) and 1.3 +/- 0.1 degrees C, respectively. We corrected maternal and fetal blood gas values for the temperatures in vivo. Maternal arterial partial pressure of O2 (PO2), near exhaustion during prolonged (40 min) exercise at 70% maximal O2 consumption, increased 13% to a maximum of 116.7 +/- 4.0 Torr, whereas partial pressure of CO2 (PCO2) decreased by 28% to 27.6 +/- 2.2 Torr. Fetal arterial PO2 decreased 11% to a minimum of 23.2 +/- 1.6 Torr, O2 content by 26% to 4.3 +/- 0.6 ml X dl -1, PCO2 by 8% to 49.6 +/- 3.2 Torr, but pH did not change significantly. Recovery was virtually complete within 20 min. During exercise total uterine O2 consumption was maintained despite the reduction in uterine blood flow because of hemoconcentration and increased O2 extraction. The decrease of 3 Torr in fetal arterial PO2 and 1.5 ml X dl -1 in O2 content did not result in major cardiovascular changes or catecholamine release. These findings suggest that maternal exercise does not represent a major stressful or hypoxic event to the fetus.  相似文献   

9.
We investigated the effect of muscle metaboreflex activation on left circumflex coronary blood flow (CBF), coronary vascular conductance (CVC), and regional left ventricular performance in conscious, chronically instrumented dogs during treadmill exercise before and after the induction of heart failure (HF). In control experiments, muscle metaboreflex activation during mild exercise elicited significant reflex increases in mean arterial pressure, heart rate, and cardiac output. CBF increased significantly, whereas no significant change in CVC occurred. There was no significant change in the minimal rate of myocardial shortening (-dl/dt(min)) with muscle metaboreflex activation during mild exercise (15.5 +/- 1.3 to 16.8 +/- 2.4 mm/s, P > 0.05); however, the maximal rate of myocardial relaxation (+dl/dt(max)) increased (from 26.3 +/- 4.0 to 33.7 +/- 5.7 mm/s, P < 0.05). Similar hemodynamic responses were observed with metaboreflex activation during moderate exercise, except there were significant changes in both -dl/dt(min) and dl/dt(max). In contrast, during mild exercise with metaboreflex activation during HF, no significant increase in cardiac output occurred, despite a significant increase in heart rate, inasmuch as a significant decrease in stroke volume occurred as well. The increases in mean arterial pressure and CBF were attenuated, and a significant reduction in CVC was observed (0.74 +/- 0.14 vs. 0.62 +/- 0.12 ml x min(-1) x mmHg(-1); P < 0.05). Similar results were observed during moderate exercise in HF. Muscle metaboreflex activation did not elicit significant changes in either -dl/dt(min) or +dl/dt(max) during mild exercise in HF. We conclude that during HF the elevated muscle metaboreflex-induced increases in sympathetic tone to the heart functionally vasoconstrict the coronary vasculature, which may limit increases in myocardial performance.  相似文献   

10.
Oxygen transport during steady-state submaximal exercise in chronic hypoxia   总被引:3,自引:0,他引:3  
Arterial O2 delivery during short-term submaximal exercise falls on arrival at high altitude but thereafter remains constant. As arterial O2 content increases with acclimatization, blood flow falls. We evaluated several factors that could influence O2 delivery during more prolonged submaximal exercise after acclimatization at 4,300 m. Seven men (23 +/- 2 yr) performed 45 min of steady-state submaximal exercise at sea level (barometric pressure 751 Torr), on acute ascent to 4,300 m (barometric pressure 463 Torr), and after 21 days of residence at altitude. The O2 uptake (VO2) was constant during exercise, 51 +/- 1% of maximal VO2 at sea level, and 65 +/- 2% VO2 at 4,300 m. After acclimatization, exercise cardiac output decreased 25 +/- 3% compared with arrival and leg blood flow decreased 18 +/- 3% (P less than 0.05), with no change in the percentage of cardiac output to the leg. Hemoglobin concentration and arterial O2 saturation increased, but total body and leg O2 delivery remained unchanged. After acclimatization, a reduction in plasma volume was offset by an increase in erythrocyte volume, and total blood volume did not change. Mean systemic arterial pressure, systemic vascular resistance, and leg vascular resistance were all greater after acclimatization (P less than 0.05). Mean plasma norepinephrine levels also increased during exercise in a parallel fashion with increased vascular resistance. Thus we conclude that both total body and leg O2 delivery decrease after arrival at 4,300 m and remain unchanged with acclimatization as a result of a parallel fall in both cardiac output and leg blood flow and an increase in arterial O2 content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Hepatic lactate uptake versus leg lactate output during exercise in humans.   总被引:1,自引:0,他引:1  
The exponential rise in blood lactate with exercise intensity may be influenced by hepatic lactate uptake. We compared muscle-derived lactate to the hepatic elimination during 2 h prolonged cycling (62 +/- 4% of maximal O(2) uptake, (.)Vo(2max)) followed by incremental exercise in seven healthy men. Hepatic blood flow was assessed by indocyanine green dye elimination and leg blood flow by thermodilution. During prolonged exercise, the hepatic glucose output was lower than the leg glucose uptake (3.8 +/- 0.5 vs. 6.5 +/- 0.6 mmol/min; mean +/- SE) and at an arterial lactate of 2.0 +/- 0.2 mM, the leg lactate output of 3.0 +/- 1.8 mmol/min was about fourfold higher than the hepatic lactate uptake (0.7 +/- 0.3 mmol/min). During incremental exercise, the hepatic glucose output was about one-third of the leg glucose uptake (2.0 +/- 0.4 vs. 6.2 +/- 1.3 mmol/min) and the arterial lactate reached 6.0 +/- 1.1 mM because the leg lactate output of 8.9 +/- 2.7 mmol/min was markedly higher than the lactate taken up by the liver (1.1 +/- 0.6 mmol/min). Compared with prolonged exercise, the hepatic lactate uptake increased during incremental exercise, but the relative hepatic lactate uptake decreased to about one-tenth of the lactate released by the legs. This drop in relative hepatic lactate extraction may contribute to the increase in arterial lactate during intense exercise.  相似文献   

12.
Distribution of blood flow in muscles of miniature swine during exercise   总被引:7,自引:0,他引:7  
The purpose of this study was to determine how the distribution of blood flow within and among the skeletal muscles of miniature swine (22 +/- 1 kg body wt) varies as a function of treadmill speed. Radiolabeled microspheres were used to measure cardiac output (Q) and tissue blood flows in preexercise and at 3-5 min of treadmill exercise at 4.8, 8.0, 11.3, 14.5, and 17.7 km/h. All pigs (n = 8) attained maximal O2 consumption (VO2max) (60 +/- 4 ml X min-1 X kg-1) by the time they ran at 17.7 km/h. At VO2max, 87% of Q (9.9 +/- 0.5 l/min) was to skeletal muscle, which constituted 36 +/- 1% of body mass. Average total muscle blood flow at VO2max was 127 +/- 14 ml X min-1 X 100 g-1; average limb muscle flow was 135 +/- 17 ml X min-1 X 100 g-1. Within the limb muscles, blood flow was distributed so that the deep red parts of extensor muscles had flows about two times higher than the more superficial white portions of the same muscles; the highest muscle blood flows occurred in the elbow flexors (brachialis: 290 +/- 44 ml X min-1 X 100 g-1). Peak exercise blood flows in the limb muscles were proportional (P less than 0.05) to the succinate dehydrogenase activities (r = 0.84), capillary densities (r = 0.78), and populations of oxidative (slow-twitch oxidative + fast-twitch oxidative-glycolytic) fiber types (r = 0.93) in the muscles. Total muscle blood flow plotted as a function of exercise intensity did not peak until the pigs attained VO2max, although flows in some individual muscles showed a plateau in this relationship at submaximal exercise intensities. The data demonstrate that blood flow in skeletal muscles of miniature swine is distributed heterogeneously and varies in relation to fiber type composition and exercise intensity.  相似文献   

13.
Ischemia of active skeletal muscle evokes a powerful blood pressure-raising reflex termed the muscle metaboreflex (MMR). MMR activation increases cardiac sympathetic nerve activity, which increases heart rate, ventricular contractility, and cardiac output (CO). However, despite the marked increase in ventricular work, no coronary vasodilation occurs. Using conscious, chronically instrumented dogs, we observed MMR-induced changes in arterial pressure, CO, left circumflex coronary blood flow (CBF), and coronary vascular conductance (CVC) before and after alpha1-receptor blockade (prazosin, 100 microg/kg iv). MMR was activated during mild treadmill exercise by partially reducing hindlimb blood flow. In control experiments, MMR activation caused a substantial pressor response-mediated via increases in CO. Although CBF increased (+28.1 +/- 3.7 ml/min; P < 0.05), CVC did not change (0.45 +/- 0.05 vs. 0.47 +/- 0.06 ml x min(-1) x mmHg(-1), exercise vs. exercise with MMR activation, respectively; P > 0.05). Thus all of the increase in CBF was due to the increase in arterial pressure. In contrast, after prazosin, MMR activation caused a greater increase in CBF (+55.9 +/- 17.1 ml/min; P < 0.05 vs. control) and CVC rose significantly (0.59 +/- 0.08 vs. 0.81 +/- 0.17 ml x min(-1) x mmHg(-1), exercise vs. exercise with MMR activation, respectively; P < 0.05). A greater increase in CO also occurred (+2.01 +/- 0.1 vs. +3.27 +/- 1.1 l/min, control vs. prazosin, respectively; P < 0.05). We conclude that the MMR-induced increases in sympathetic activity to the heart functionally restrain coronary vasodilation, which may limit increases in ventricular function.  相似文献   

14.
Dynamic cerebral autoregulation (CA) is challenged by exercise and may become less effective when exercise is exhaustive. Exercise may increase arterial glucose concentration, and we evaluated whether the cerebrovascular response to exercise is affected by hyperglycemia. The effects of a hyperinsulinemic euglycemic clamp (EU) and hyperglycemic clamp (HY) on the cerebrovascular (CVRI) and systemic vascular resistance index (SVRI) responses were evaluated in seven healthy subjects at rest and during rhythmic handgrip exercise. Transfer function analysis of the dynamic relationship between beat-to-beat changes in mean arterial pressure and middle cerebral artery (MCA) mean blood flow velocity (V(mean)) was used to assess dynamic CA. At rest, SVRI decreased with HY and EU (P < 0.01). CVRI was maintained with EU but became reduced with HY [11% (SD 3); P < 0.01], and MCA V(mean) increased (P < 0.05), whereas brain catecholamine uptake and arterial Pco(2) did not change significantly. HY did not affect the normalized low-frequency gain between mean arterial pressure and MCA V(mean) or the phase shift, indicating maintained dynamic CA. With HY, the increase in CVRI associated with exercise was enhanced (19 +/- 7% vs. 9 +/- 7%; P < 0.05), concomitant with a larger increase in heart rate and cardiac output and a larger reduction in SVRI (22 +/- 4% vs. 14 +/- 2%; P < 0.05). Thus hyperglycemia lowered cerebral vascular tone independently of CA capacity at rest, whereas dynamic CA remained able to modulate cerebral blood flow around the exercise-induced increase in MCA V(mean). These findings suggest that elevated blood glucose does not explain that dynamic CA is affected during intense exercise.  相似文献   

15.
The purpose of this investigation was to examine whether the effect of changes in central blood volume on carotid-vasomotor baroreflex sensitivity at rest was the same during exercise. Eight men (means +/- SE: age 26 +/- 1 yr; height 180 +/- 3 cm; weight 86 +/- 6 kg) participated in the present study. Sixteen Torr of lower body negative pressure (LBNP) were applied to decrease central venous pressure (CVP) at rest and during steady-state leg cycling at 50% peak O2 uptake (104 +/- 20 W). Subsequently, infusions of 25% human serum albumin solution were administered to increase CVP at rest and during exercise. During all protocols, heart rate, arterial blood pressure, and CVP were recorded continuously. At each stage of LBNP or albumin infusion, the maximal gain (G(max)) of the carotid-vasomotor baroreflex function curve was measured using the neck pressure and neck suction technique. LBNP reduced CVP and increased the G(max) of the carotid-vasomotor baroreflex function curve at rest (+63 +/- 25%, P = 0.006) and during exercise (+69 +/- 19%, P = 0.002). In contrast to the LBNP, increases in CVP resulted in the G(max) of the carotid-vasomotor baroreflex function curve being decreased at rest -8 +/- 4% and during exercise -18 +/- 5% (P > 0.05). These findings indicate that the relationship between CVP and carotid-vasomotor baroreflex sensitivity was nonlinear at rest and during exercise and suggests a saturation load of the cardiopulmonary baroreceptors at which carotid-vasomotor baroreflex sensitivity remains unchanged.  相似文献   

16.
Five chair-restrained baboons were trained with operant techniques and a food reward to perform dynamic leg exercise. Cardiac output and blood flows to most tissues were determined by radioactive microsphere distribution. After 2 min of exercise mean arterial blood pressure had increased by 11 +/- 3% (SE), heart rate by 34 +/- 7%, cardiac output by 50 +/- 12%, and O2 consumption by 157 +/- 17%. The blood flow to exercising leg muscle increased by 585 +/- 338% and to the myocardium by 35 +/- 19%. Blood flow to torso and limb skin fell by 38 +/- 4 and 38 +/- 6%, respectively, and similar reductions occurred in adipose tissue blood flow. Nonworking skeletal muscle blood flow decreased by 30 +/- 10%. Renal blood flow was lowered by 16 +/-2%. The lower visceral organs had more variable responses, but when grouped together total splanchnic blood flow fell by 21 +/- 9%. Blood flow to the brain was unchanged with exercise, whereas spinal cord perfusion increased 23 +/- 3%. Thus during short dynamic exercise baboons redistributed blood flow away from skin, fat, nonworking muscles, and visceral organs to supply the needs of exercising muscles. Our data suggest the baboon is a useful animal model for investigating vascular responses of tissues, such as torso skin, adipose, individual visceral organs, and the spinal cord, that cannot be examined in humans.  相似文献   

17.
Arm blood flow at rest and during arm exercise   总被引:2,自引:0,他引:2  
To test the applicability of a dye-dilution method to quantitate total arm blood flow at rest and during arm exercise, indocyanine green was infused at a constant rate into the brachial artery. Eight subjects performed continuous 30-min arm exercises with an increase in intensity every 10 min (30, 60, and 90 W). The loads corresponded to 29 +/- 1, 48 +/- 2, and 78 +/- 4% (means +/- SE) of the maximal O2 uptake (VO2max 2.13 +/- 0.08 l/min) during arm exercise. VO2max during arm exercise was 61 +/- 1.7% of that during leg exercise. The dye concentration was analyzed in blood samples from three arm veins, two ipsi- and one contralateral, at shoulder level. Corresponding dye concentrations in both ipsilateral veins and a stable concentration difference between ipsi- and contralateral veins were achieved. Total arm blood flow was calculated to be 0.21 +/- 0.04 l/min at rest and 2.43 +/- 0.14 l/min at 90 W. Arm O2 uptake rose from 9 +/- 2 to 323 +/- 21 ml/min. Arm blood flow and O2 uptake each correlated linearly with both work load (r = 0.98) and pulmonary O2 uptake (r greater than or equal to 0.98). Mechanical efficiency for the arm and body was 34-44 and 16-19%, respectively. We conclude that arm blood flow can be determined by continuous infusion of indocyanine green.  相似文献   

18.
Two potential mechanisms, reduced skin blood flow (SBF) and sweating rate (SR), may be responsible for elevated intestinal temperature (T(in)) during exercise after bed rest and spaceflight. Seven men underwent 13 days of 6 degrees head-down bed rest. Pre- and post-bed rest, subjects completed supine submaximal cycle ergometry (20 min at 40% and 20 min at 65% of pre-bed rest supine peak exercise capacity) in a thermoneutral room. After bed rest, T(in) was elevated at rest (+0.31 +/- 0.12 degrees C) and at the end of exercise (+0.33 +/- 0.07 degrees C). Percent increase in SBF during exercise was less after bed rest (211 +/- 53 vs. 96 +/- 31%; P < or = 0.05), SBF/T(in) threshold was greater (37.09 +/- 0.16 vs. 37.33 +/- 0.13 degrees C; P < or = 0.05), and slope of SBF/T(in) tended to be reduced (536 +/- 184 vs. 201 +/- 46%/ degrees C; P = 0.08). SR/T(in) threshold was delayed (37.06 +/- 0.11 vs. 37.34 +/- 0.06 degrees C; P < or = 0.05), but the slope of SR/T(in) (3.45 +/- 1.22 vs. 2.58 +/- 0.71 mg x min-1 x cm-2 x degrees C-1) and total sweat loss (0.42 +/- 0.06 vs. 0.44 +/- 0.08 kg) were not changed. The higher resting and exercise T(in) and delayed onset of SBF and SR suggest a centrally mediated elevation in the thermoregulatory set point during bed rest exposure.  相似文献   

19.
Exercise training increases coronary transport reserve in miniature swine   总被引:4,自引:0,他引:4  
Female yucatan miniature swine were trained on a treadmill (ET) or were cage confined (C) for 16-22 wk. The ET pigs had increased exercise tolerance, heart weight-to-body weight ratio, and skeletal muscle oxidative capacity. After anesthesia the left anterior descending coronary artery was cannulated and pump perfused with blood while aortic, central venous, and coronary perfusion pressures, electrocardiogram, heart rate, and coronary blood flow were monitored. Capillary permeability-surface area product (PS) for EDTA was determined with the single-injection indicator-diffusion method by use of an organ model based on the Sangren-Sheppard equations for capillary transport. Coronary blood flow (CBF) and PS were compared before and during maximal adenosine vasodilation with coronary perfusion pressures at 120 mmHg. Results indicate that there were no differences in base-line CBF or PS between C and ET groups. alpha-Receptor blockade with phentolamine and/or prazosin, before adenosine vasodilation, produced increases in PS in C pigs but had little effect in ET pigs. During maximal vasodilation with adenosine, ET pigs had greater CBF (447 +/- 24 vs. 366 +/- 27 ml.min-1.100 g-1) and greater PS (83 +/- 9 vs. 55 +/- 7 ml.min-1.100 g-1) than the C group. It is concluded that ET induces an increased coronary transport capacity in miniature swine that includes a 22% increase in blood flow capacity and a 51% increase in capillary exchange capacity.  相似文献   

20.
An increased hematocrit could enhance peripheral O2 transport during exercise by improving arterial O2 content. Conversely, it could reduce maximal delivery of O2 by limiting cardiac output during exercise or by limiting the distribution of blood flow to peripheral capillaries with high O2 extractions. We studied O2 transport at rest and during graded treadmill exercise in splenectomized tracheostomized dogs at normal hematocrit (38 +/- 3%), and 48 h after transfusion of type-matched donor cells. This procedure increased hematocrit (60 +/- 3%) but also increased blood volume (P less than 0.05). Following transfusion, resting cardiac output (QT) and heart rate were not different. During exercise, QT was significantly lower at each level of O2 consumption (VO2) at high hematocrit (P less than 0.01). A reduction in QT was also seen during polycythemic exercise with hypoxemia produced by breathing 12 or 10% O2 in N2. Despite the reduction in QT, mixed venous PO2 was not lower at high hematocrit, and the increase in base deficit with VO2 was not different from control measurements. O2 delivery (QT X arterial content) was similar at each level of VO2 at both levels of hematocrit, during both normoxic and hypoxic studies. Both systemic and pulmonary arterial pressures were increased at rest after transfusion (P less than 0.05). However, pulmonary and systemic pressures were not higher than control during exercise at high hematocrit. We conclude that a hematocrit of 60% with increased blood volume is not associated with a cardiac limitation of O2 delivery, nor does it interfere with peripheral O2 extraction during exercise in the dog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号