首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biofiltration of n-butyric acid for the control of odour   总被引:3,自引:0,他引:3  
Odour control from pig production facilities is a significant concern due to increased public awareness and the development of more stringent legislation to control production. Although many technologies exist, biofiltration is still the most attractive due to its low maintenance and operating costs. One of the key odour components, n-butyric acid, was selected for a laboratory scale biofilter study. It was examined as a sole carbon substrate in order to investigate the effectiveness of biofiltration in reducing n-butyric acid concentration under different operating conditions using a moist enriched woodchip medium. Three superficial gas velocities; 38.2, 76.4, and 114.6 m x h(-1) were tested for n-butyric acid concentrations ranging from 0.13 to 3.1 g [n-butyric acid] m(-3) [air]. For superficial gas velocities 38.2, 76.4, and 114.6 m x h(-1), maximum elimination capacities (100% removal) of 148, 113 and 34.4 g x m(3) x h(-1), respectively, were achieved. Upon investigation of effective bed height, true elimination capacities (100% removal) of 230, 233 and 103 g x m(-3) x h(-1), respectively, were achieved at these superficial gas velocities. Averaged pressure drops for superficial gas velocities 38.2, 76.4, and 114.6 m x h(-1) were 30, 78 and 120 Pa, respectively. It was concluded that biofiltration is a viable technology for the removal of n-butyric acid from waste exhaust air, but near 100% removal efficiency is required due to the low odour detection threshold for this gaseous compound.  相似文献   

2.
The behaviour of 3-week weaned pigs in different housing systems was examined as part of an assessment of the suitability of the Straw-Flow(R) system for pigs of this age. Three replicate pens of 20 pigs were weaned at 6.4 kg liveweight into each of: (a) deep-straw; (b) Straw-Flow(R); (c) large flatdeck; (d) small flatdeck. A kenneled lying area was provided in (a) and (b). The floor in (c) and (d) was expanded metal. Stocking densities were 0.23 m(2)/pig in (a), (b) and (c), and 0.17 m(2)/pig in (d). After 4-5 weeks (at 19.6 kg liveweight), 16 pigs from each pen were moved into Straw-Flow(R) grower pens (0.68 m(2)/pig) and observed until slaughter at 90.6 kg. Pigs in systems incorporating straw showed behaviour patterns associated with increased welfare (greater straw-directed behaviour and less pig-directed and pen-directed behaviour) relative to those in barren pens. Behavioural differences between (a) and (b) related to differences in available straw; there were few differences between (c) and (d). Pigs from (c) and (d) showed increased rooting relative to those from (a) after transfer to the grower pens, but other behavioural differences between weaner treatments did not persist. It is concluded that the Straw-Flow(R) system can provide suitable accommodation for weaned pigs.  相似文献   

3.
The removal of volatile organic compounds (VOC) in biofilters packed with organic filter beds, such as peat moss (PM) and pine sawdust (PS), frequently presents drawbacks associated to the collapse of internal structures affecting the long-term operation. Poly(ethylene ether carbonate) (PEEC) groups grafted to these organic carriers cross linked with 4,4'-methylenebis(phenylisocyanate) (MDI) permitted fiber aggregation into specific shapes and with excellent hexane sorption performance. Modified peat moss (IPM) showed very favorable characteristics for rapid microbial development. Water-holding capacity in addition to hexane adsorption almost equal to the dry samples was obtained. Pilot scale hexane biofiltration experiments were performed with the composites after inoculation with the filamentous fungus Fusarium solani. During the operation of the biofilter under non-aseptic conditions, the addition of bacterial antibiotics did not have a relevant effect on hexane removal, confirming the role of fungi in the uptake of hexane and that bacterial growth was intrinsically limited by an adequate performance of the composites. IPM biofilter had a start-up period of 8-13 days with concurrent CO(2) production of approximately 90 g m(-3) h(-1) at day 11. The final pressure drop after 70 days of operation was 5.3 mmH(2)O m(-1) reactor. For modified pine sawdust (IPS) packed biofilter, 5 days were required to develop an EC of about 100 g m(-3) h(-1) with an inlet hexane load of approximately 190 g m(-3) h(-1). Under similar conditions, 12-17 days were required to observe a significant start-up in the reference perlite biofilter to reach gradually an EC of approximately 100 g m(-3) h(-1) at day 32. Under typical biofiltration conditions, the physical-chemical properties of the modified supports maintained a minimum water activity (a(w)) of 0.925 and a pH between 4 and 5.5, which allowed the preferential fungal development and limited bacterial growth.  相似文献   

4.
Both short-term and long-term biofiltration experiments were undertaken with a biofilter inoculated with a defined microbial consortium and treating an alkylbenzene mixture. The results obtained with such a biofilter in short-term experiments were very similar to those obtained with a biofilter inoculated with a non-defined mixed culture, in terms of maximum elimination capacities (70-72 g m(-3) h(-1)) and the corresponding removal efficiencies (>95%). However, in long-term experiments, a better performance was reached, with a maximum elimination capacity of 120 g m(-3) h(-1), corresponding to a removal efficiency >99% after 2 years of operation. Inoculation proved to be useful for shortening the start-up period. In the long term, it appeared that biomass distribution was not homogenous along the biofilter, which in some cases resulted in a bad fit between simple model equations and experimental data.  相似文献   

5.
The macro-kinetic behavior of phenol removal from a synthetic exhaust gas was investigated theoretically as well as experimentally by means of two identical continuously operating laboratory-scale biological filter bed columns. A mixture of peat and glass beads was used as filter material. After sterilization it was inoculated with a pure strain of Pseudomonas putida, as employed in previous experimental studies. To determine the influence of the superficial gas flow rate on biofilter performance and to evaluate the phenol concentration profiles along the column, two series of continuous tests were carried out varying either the inlet phenol concentration, up to 1650 mg . m(-3), or the superficial gas flow rate, from 30 to 460 m(3) . m(-2) . h(-1). The elimination capacity of the biofilter is proved by a maximum volumetric phenol removal rate of 0.73 kg . m(-3) . h(-1). The experimental results are consistent with a biofilm model incorporating first-order substrate elimination kinetics. The model may be considered a useful tool in scaling-up a biofiltration system. Furthermore, the deodorization capacity of the biofilter was investigated, at inlet phenol concentrations up to 280 mg . m(-3) and superficial gas flow rates ranging from 30 to 92 m(3) . m(-2) . h(-1). The deodorization of the gas was achieved at a maximum inlet phenol concentration of about 255 mg . m(-3), operating at a superficial gas flow rate of 30 m(3) . m(-2) . h(-1). (c) 1996 John Wiley & Sons, Inc.  相似文献   

6.
Packing material is a crucial component of a bioreactor as it is the microbial population's habitat. This study assessed potential improvements to current biofiltration processes by investigating use of a novel support medium. Biological activated carbon (BAC) with microorganisms growing on granular activated carbon can produce a novel medium in which both adsorption and biodegradation contribute to pollutants removal. Investigation of carbon characteristics demonstrated that BAC was an ideal packing medium for biofiltration. The application of the novel packing medium for gas mixture treatment was evaluated in a low pH biofilter. Results demonstrated that BAC biofilter obtained high removal efficiency for both H(2)S and toluene. The removal mechanisms of BAC were investigated after the biofilter operation and it demonstrated that the performance of the BAC system was mainly controlled by the additive contributions of two removal mechanisms - adsorption and biodegradation. This study also indicated the potential for simultaneous treatment of hydrogen sulfide and toluene at low pH condition.  相似文献   

7.
Biofiltration of ethylbenzene vapours: influence of the packing material   总被引:3,自引:0,他引:3  
In order to investigate suitable packing materials, a soil amendment composed of granular high mineralized peat (35% organic content) locally available has been evaluated as carrier material for biofiltration of volatile organic compounds in air by comparison with a fibrous peat (95% organic content). Both supports were tested to eliminate ethylbenzene from air streams in laboratory-scale reactors inoculated with a two-month conditioned culture. In pseudo-steady state operation, experiments at various ethylbenzene inlet loads (ILs) were carried out. Maximum elimination capacity of about 120 g m(-3) h(-1) for an IL of 135 g m(-3) h(-1) was obtained for the fibrous peat. The soil amendment reactor achieved a maximum elimination capacity of about 45 g m(-3) h(-1) for an inlet load of 55 g m(-3) h(-1). Ottengraf-van den Oever model was applied to the prediction of the performance of both biofilters. The influence of gas flow rate was also studied: the fibrous peat reactor kept near complete removal efficiency for empty bed residence times greater than 1 min. For the soil amendment reactor, an empty bed residence time greater than 2 min was needed to achieve adequate removal efficiency. Concentration profiles along the biofilter were also compared: elimination occurred in the whole fibrous peat biofilter, while in the soil amendment reactor the biodegradation only occurred in the first 65% part of the biofilter. Results indicated that soil amendment material, previously selected to increase the organic content, would have potential application as biofilter carrier to treat moderate VOC inlet loads.  相似文献   

8.
The aims of this study were to evaluate four preventive measures and two curative treatments of tail biting. The preventive measures were: chain, rubber hose, straw rack (5 g/pig/day) and the provision of straw on the floor twice daily by hand (2 × 10 g/pig/day). The two curative treatments, which were applied following the onset of tail biting in a pen were: straw twice daily (as in the fourth preventive measure) and the removal of the biter. In total, 960 undocked weaned piglets (10 piglets per pen) were observed during 5 weeks. Tail lesions (none, bite marks and wounds) were recorded daily. The incidence of pens with wounded pig tails was significantly lower when straw was provided twice daily (8% of pens) compared to the chain (58% of pens) and rubber hose (54% of pens) treatment, but did not differ significantly from the straw rack treatment (29% of pens). Tails with bite marks were significantly less common in pens with twice daily straw (16% of pens) compared to chain (88% of pens), rubber hose (79% of pens) and straw rack (75% of pens). No significant difference was found between the curative treatments. Both treatments showed a reduced incidence of red fresh blood on the tails at days 1–9 following curative treatment, compared to day 0. However, neither curative treatment eliminated tail biting entirely. In conclusion, this study indicates that tail biting is best prevented with a small amount of straw, provided twice daily, and to a lesser extent with a straw rack, compared to providing a chain or a rubber hose. Once tail biting has occurred, providing a small amount of straw twice daily and removing the biter appears to be equally effective.  相似文献   

9.
Carcass traits and meat quality of rabbits reared in conventional cages (0.385 m2), small pens (0.662 m2) or large pens (4.052 m2) at a similar stock density of 15 rabbits/m2 were compared (n = 30 per group). Pens contained an elevated platform. Slaughter weight (SW; P < 0.01) and cold carcass weight (P < 0.05) decreased in the order of Cage < Small pen < Large pen groups. SW and cold carcass weight were 7% lower in rabbits housed in large pens than in cages. Dressing out and meat-to-bone ratio were not influenced by the housing system. Percentage of fat deposits was highest in caged rabbits (+0.15 point for scapular fat and +0.26 point for perirenal fat compared to rabbits reared in large pens P < 0.05). Rabbits housed in large pens had a bigger proportion of hind part (+1 point), and meat colour was shifted towards greater a* values (P < 0.01) compared to caged rabbits. Water holding capacity and shear test parameters in longissimus lumborum muscle, lipid content and shear test parameters of abductor cruralis cranialis, biceps femoris and semitendinosus muscles were not affected by the housing system. Tibia and femur bone moment of inertia increased in the order of Cage < Small pen < Large pen groups (P < 0.05), whereas elastic modulus, which is a measure of intrinsic stiffness, was highest in caged rabbits. This study showed that large pen housing altered carcass traits independently and increased meat redness and fracture resistance of tibia and femur.  相似文献   

10.
Compost biofiltration of ammonia gas from bin composting   总被引:3,自引:0,他引:3  
The effects of the manure compost/coconut peels on the ammonia removal efficiency were examined from dairy manure composting mixed with crop residues. The high rapid composting and manure compost biofiltration experiments consisted of three biofilter vessels with one composter. Dairy manure amended with rice hulls and sawdust was composted in 605 L pilot-scale composter using continuous aeration for 19 days. Three pilot-scale manure compost biofilter amended with media bed 500 mm in depth and 300 mm in diameter were built to clean ammonia emission from composter, respectively. The manure compost biofilter media in the three experimental vessels was using a 50:50 by weight mixture of manure compost and coconut peels (MC/CP). The ammonia concentrations at the inlet and outlet biofilter media were measured by boric acid traps as described by Hong et al. [Hong, J.H., Keener, H.M., Elwell, D.L., 1998. Preliminary study of the effect of continuous and intermittent aeration on composting hog manure amended with sawdust. Compost Science and Utilization 6 (3), 74-88]. Results indicated that the mixture of MC/CP performed well as a biofilter media and the ammonia removal efficiency was 100% for the filter depth of 500 mm.  相似文献   

11.
Toluene biofiltration by the fungus Scedosporium apiospermum TB1   总被引:5,自引:0,他引:5  
The performance of biofilters inoculated with the fungus Scedosporium apiospermum was evaluated. This fungus was isolated from a biofilter which operated with toluene for more than 6 months. The experiments were performed in a 2.9 L reactor packed with vermiculite or with vermiculite-granular activated carbon as packing material. The initial moisture content of the support and the inlet concentration of toluene were 70% and 6 g/m3, respectively. As the pressure drop increased from 5-40 mm H2O a strong initial growth was observed. Stable operation was maintained for 20 days with a moisture content of 55% and a biomass of 33 mg biomass/g dry support. These conditions were achieved with intermittent addition of culture medium, which permitted a stable elimination capacity (EC) of 100 g/m3(reactor)h without clogging. Pressure drop across the bed and CO2 production were related to toluene elimination. Measurement of toluene, at different levels of the biofilter, showed that the system attained higher local EC (200 g/m3(r)h) at the reactor outlet. These conditions were related to local humidity conditions. When the mineral medium was added periodically before the EC decreases, EC of approximately 258 g/m3(r)h were maintained with removal efficiencies of 98%. Under these conditions the average moisture content was 60% and 41 mg biomass/g dry support was produced. No sporulation was observed. Evaluation of bacterial content and activities showed that the toluene elimination was only due to S. apiospermum catabolism.  相似文献   

12.
In the EU, pigs must have permanent access to manipulable materials such as straw, rope, wood, etc. Long straw can fulfil this function, but can increase labour requirements for cleaning pens, and result in problems with blocked slatted floors and slurry systems. Chopped straw might be more practical, but what is the effect on pigs’ behaviour of using chopped straw instead of long straw? Commercial pigs in 1/3 slatted, 2/3 solid pens of 15 pigs were provided with either 100 g/pig per day of long straw (20 pens) or of chopped straw (19 pens). Behavioural observations were made of three focal pigs per pen (one from each of small, medium and large weight tertiles) for one full day between 0600 and 2300 h at each of ~40 and ~80 kg. The time spent rooting/investigating overall (709 s/pig per hour at 40 kg to 533 s/pig per hour at 80 kg), or directed to the straw/solid floor (497 s/pig per hour at 40 kg to 343 s/pig per hour at 80 kg), was not affected by straw length but reduced with age. Time spent investigating other pigs (83 s/pig per hour at 40 kg), the slatted floor (57 s/pig per hour) or pen fixtures (21 s/pig per hour) was not affected by age or straw length. Aggressive behaviour was infrequent, but lasted about twice as long in pens with chopped straw (2.3 s/pig per hour at 40 kg) compared with pens with long straw (1.0 s/pig per hour at 40 kg, P=0.060). There were no significant effects of straw length on tail or ear lesions, but shoulders were significantly more likely to have minor scratches with chopped straw (P=0.031), which may reflect the higher levels of aggression. Smaller pigs showed more rooting/investigatory behaviour, and in particular directed towards the straw/solid floor and the slatted floor than their larger pen-mates. Females exhibited more straw and pen fixture-directed behaviour than males. There were no effects of pig size or sex on behaviour directed towards other pigs. In summary, pigs spent similar amounts of time interacting with straw/solid floor when long and chopped straw were provided, and most aspects of pig-directed behaviour and injuries were not affected by straw length. There was an increase in pigs with minor shoulder lesions with chopped straw, perhaps because of increased aggression. The use of chopped straw as an enrichment material for pigs warrants further investigation in larger and more detailed studies.  相似文献   

13.
Thermophilic biofiltration of benzene and toluene   总被引:1,自引:0,他引:1  
In the current studies, we characterized the degradation of a hot mixture of benzene and toluene (BT) gases by a thermophilic biofilter using polyurethane as packing material and high-temperature compost as a microbial source. We also examined the effect of supplementing the biofilter with yeast extract (YE). We found that YE substantially enhanced microbial activity in the thermophilic biofilter. The degrading activity of the biofilter supplied with YE was stable during long-term operation (approximately 100 d) without accumulating excess biomass. The maximum elimination capacity (1,650 g x m(-3) h(-1)) in the biofilter supplemented with YE was 3.5 times higher than that in the biofilter without YE (470 g g x m(-3) h(-1)). At similar retention times, the capacity to eliminate BT for the YE-supplemented biofilter was higher than for previously reported mesophilic biofilters. Thus, thermophilic biofiltration can be used to degrade hydrophobic compounds such as a BT mixture. Finally, 16S rDNA polymerase chain reaction-DGGE (PCR-DGGE) fingerprinting revealed that the thermophilic bacteria in the biofilter included Rubrobacter sp. and Mycobacterium sp.  相似文献   

14.
Biofiltration of volatile organic compounds   总被引:6,自引:0,他引:6  
The removal of volatile organic compounds (VOCs) from contaminated airstreams has become a major air pollution concern. Improvement of the biofiltration process commonly used for the removal of odorous compounds has led to a better control of key parameters, enabling the application of biofiltration to be extended also to the removal of VOCs. Moreover, biofiltration, which is based on the ability of micro-organisms to degrade a large variety of compounds, proves to be economical and environmentally viable. In a biofilter, the waste gas is forced to rise through a layer of packed porous material. Thus, pollutants contained in the gaseous effluent are oxidised or converted into biomass by the action of microorganisms previously fixed on the packing material. The biofiltration process is then based on two principal phenomena: (1) transfer of contaminants from the air to the water phase or support medium, (2) bioconversion of pollutants to biomass, metabolic end-products, or carbon dioxide and water. The diversity of biofiltration mechanisms and their interaction with the microflora mean that the biofilter is defined as a complex and structured ecosystem. As a result, in addition to operating conditions, research into the microbial ecology of biofilters is required in order better to optimise the management of such biological treatment systems.  相似文献   

15.
The effects of acclimatization of microbial populations, compound concentration, and media pH on the biodegradation of low concentration dichloromethane emissions in biofiltration systems was evaluated. Greater than 98% removal efficiency was achieved for dichloromethane at superficial velocities from 1 to 1.5 m(3)/m(3). min (reactor residence times of 1 and 0.7 min, respectively) and inlet concentrations of 3 and 50 ppm Although acclimatization of microbial populations to toluene occurred within 2 weeks of operation start-up, initial dichloromethane acclimatization took place over a period of 10 weeks. This period was shortened to 10 days when a laboratory grown consortium of dichloromethane degrading organism, isolated from a previously acclimatized column, was introduced into fresh biofilter media. The mixed culture consisted to 12 members, which together were able to degrade dichloromethane at concentrations up to 500 mg/L. Only one member of the consortium was able to degrade dichloromethane were sustained for more than 4 months in a biofilter column receiving an inlet gas stream with 3 ppm(v) of dichloromethane acidification of the column and resulting decline in performance occurred when a 50-ppm(v) inlet concentration was used. A biofilm model incorporating first order biodegradation kinetics provided a good fit to observed concentration profiles, and may prove to be a useful tool for designing biofiltration systems for low concentration VOC emissions. (c) 1994 John Wiley & Sons, Inc.  相似文献   

16.
One challenge of intensive pig production is tail damage caused by tail biting, and farmers often decrease the prevalence of tail damage through tail docking. However, tail docking is not an optimal preventive measure against tail damage and thus, it would be preferable to replace it. The aim of the current study was to investigate the relative effect of three possible preventive measures against tail damage. The study included 112 pens with 1624 finisher pigs divided between four batches. Pens were randomly assigned to one level of each of three treatments: (1) tail-docked (n=60 pens) v. undocked (n=52 pens), (2) 150 g of straw provided per pig per day on the solid floor (n=56 pens) v. no straw provided (n=56 pens), (3) stocking density of 1.21 m2/pig (11 pig/pen; n=56 pens) v. 0.73 m2/pig (18 pigs/pen; n=56 pens). Tail damage was recorded three times per week throughout the finisher period by scoring the tail of each individual pig. A pen was recorded as a tail damage pen and no longer included in the study if at least one pig in a pen had a bleeding tail wound; thus, only the first incidence of tail damage on pen level was recorded. Data were analysed by a Cox regression for survival analysis assuming proportional hazards. Results are presented as hazards, and a higher hazard means that a pen has a higher risk of tail damage and of it happening earlier in the finisher period. Pens with undocked pigs had a 4.32-fold higher hazard of tail damage compared with pens with docked pigs (P<0.001). Pens with no straw provided had a 2.22-fold higher hazard of tail damage compared with pens with straw provided (P<0.01). No interactions was seen between the treatments, but the effect of tail docking was higher than the effect of straw provision (P<0.001). Stocking density did not have a significant effect on the hazard of tail damage (hazard rate ratios (HRR)=1.67; P=0.064). However, a combination of straw provision and lowered stocking density showed a similar hazard of tail damage as seen with only tail docking (HRR=1.58; P=0.39). In conclusion, tail docking and straw provision were preventive measures against tail damage, and tail docking reduced the risk more than straw provision. A combination of other preventive measures is necessary to reduce the risk of tail damage in undocked pigs to the same level as in docked pigs.  相似文献   

17.
Environmental enrichment, adequate space and the ability to separate a living area into suitable functional areas are key elements for pig welfare. In this study, a two-level pen for nursery pigs was explored with the aim of analysing the use of space and the impact on pig behaviour, health and performance. Therefore, per batch, three experimental groups in pens with elevated platforms (two-level pens) and one control group in a standard pen were formed after weaning at the age of 4 weeks. Thereafter, groups were studied for a period of 6 weeks. In a total of eight batches (n = 882 pigs), the occurrence of skin lesions was determined per individual using a lesion score, and in seven batches (n = 761 pigs) individual daily weight gain was analysed. In five batches (n = 450 pigs), the individual use of space and the behaviour of pigs were investigated by direct observation (4 h per day on 2 days in weeks 1, 3 and 6 of the housing period, respectively). Results revealed that 98.9% of pigs (n = 445) were observed on the elevated platform at least once. The probability that an individual pig used the platform was significantly higher than 0.95 (P < 0.0001, confidence interval = 0.977, 1). The use of the platform was not affected by sex (odds ratio (OR) = 1.013, P = 0.937). However, the probability of observing an individual on the elevated platform increased with increasing BW during the experimental period (OR = 1.043, P < 0.0001). The presence of a platform decreased the probability of seeing a pig fighting (P = 0.014) and increased the probability of observing locomotor behaviour as opposed to lying (P < 0.0001). In two-level pens, pigs sustained fewer skin injuries than in standard pens (day 41: OR = 0.731, P < 0.0001). Over 41 days of experiment, pigs in two-level pens had higher daily weight gains than animals in standard pens (416 versus 393 g/day, P = 0.006). We conclude that usable space for nursery pigs can be effectively extended by introducing elevated platforms into the pigs’ pen. Furthermore, pigs may benefit from two-level systems by establishing spaces for activity as well as for retreat from other pen mates, thereby reducing aggressive behaviour and social stress. The installation of two-level pens is therefore encouraged, if they are intended to provide more space than legally stipulated.  相似文献   

18.
The growth rate of queen conch cultured in pens was studied from October 1993 to March 1994. Sixteen pens (50 m2 each, four pens per environment), were set in four environments: Thalassia, Thalassia-sand, Sand and Coral within a reef lagoon on Punta Gavilan and Banco Chinchorro. Twenty conchs were introduced in each pen (sizes: 100-120, 120-140, 140-160 and 160-180 mm shell length) and measured monthly to the nearest mm. Growth rate was assessed by two methods: a) shell marginal mean increase and b) the Gulland-Holt method considering all conch within pens. In the first method, the environment Sand had the highest growth (3.21 +/- 0.26 mm/month) at Punta Gavilan, whereas at Banco Chinchorro, highest growth was recorded in Coral (2.31 +/- 0.44 mm/month). Considering the second method, highest asymptotic length conch in Punta Gavilan occurred in Thalassia-sand (287.5 mm), whereas in Banco Chinchorro the highest asymptotic length was measured in Sand (318.1 mm). There were significant differences in growth between sites; juvenile growth is related with habitat quality mainly food availability.  相似文献   

19.
The removal of hydrophobic pollutants in biofilters is often limited by gas liquid mass transfer to the biotic aqueous phase where biodegradation occurs. It has been proposed that the use of fungi may improve their removal efficiency. To confirm this, the uptake of hexane vapors was investigated in 2.6-L perlite-packed biofilters, inoculated with a mixed culture containing bacteria and fungi, which were operated under neutral or acid conditions. For a hexane inlet load of around 140 g.m-3.h-1, elimination capacities (EC) of 60 and 100 g.m-3.h-1 were respectively reached with the neutral and acid systems. Increasing the inlet hexane load showed that the maximum EC obtained in the acid biofilter (150 g.m-3.h-1) was twice greater than in the neutral filter. The addition of bacterial inhibitors had no significant effect on EC in the acid system. The biomass in the acid biofilter was 187 mg.g-1 (dry perlite) without an important pressure drop (26.5 mm of water.m-1reactor). The greater efficiency obtained with the acid biofilter can be related to the hydrophobic aerial hyphae which are in direct contact with the gas and can absorb the hydrophobic compounds faster than the flat bacterial biofilms. Two fungi were isolated from the acid biofilter and were identified as Cladosporium and Fusarium spp. Hexane EC of 40 g.m-3.h-1 for Cladosporium sp. and 50 g.m-3.h-1 for Fusarium sp. were obtained in short time experiments in small biofilters (0.230 L). A biomass content around 30 mg.g-1 (dry perlite) showed the potential for hexane biofiltration of the strains.  相似文献   

20.
A biofiltration system with sulfur oxidizing bacteria immobilized on granular activated carbon (GAC) as packing materials had a good potential when used to eliminate H(2)S. The sulfur oxidizing bacteria were stimulated from concentrated latex wastewater with sulfur supplement under aerobic condition. Afterward, it was immobilized on GAC to test the performance of cell-immobilized GAC biofilter. In this study, the effect of inlet H(2)S concentration, H(2)S gas flow rate, air gas flow rate and long-term operation on the H(2)S removal efficiency was investigated. In addition, the comparative performance of sulfide oxidizing bacterium immobilized on GAC (biofilter A) and GAC without cell immobilization (biofilter B) systems was studied. It was found that the efficiency of the H(2)S removal was more than 98% even at high concentrations (200-4000 ppm) and the maximum elimination capacity was about 125 g H(2)S/m(3)of GAC/h in the biofilter A. However, the H(2)S flow rate of 15-35 l/h into both biofilters had little influence on the efficiency of H(2)S removal. Moreover, an air flow rate of 5.86 l/h gave complete removal of H(2)S (100%) in biofilter A. During the long-term operation, the complete H(2)S removal was achieved after 3-days operation in biofilter A and remained stable up to 60-days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号