首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The Schizosaccharomyces pombe Rad32 protein is required for repair of DNA double strand breaks, minichromosome stability and meiotic recombination. We show here that the Rad32 protein is phosphorylated in a cell cycle-dependent manner and during meiosis. The phosphorylation is not dependent on the checkpoint protein Rad3. Analysis of a partially purified protein preparation indicates that Rad32 is likely to act in a complex. Characterisation of the rad32-1 mutation and site-directed mutagenesis indicate that three aspartate residues in the conserved phosphoesterase motifs are important for both mitotic and meiotic functions, namely response to UV and ionising radiation and spore viability.  相似文献   

2.
3.
4.
The Schizosaccharomyces pombe rad8 mutant is sensitive to both UV and gamma irradiation. We have cloned the rad8 gene by complementation of the UV sensitivity of a rad8.190 mutant strain. The gene comprises an open reading frame of 3.4 kb which does not contain any introns and is capable of encoding a 1133 amino acid protein of 129 kDa. Deletion of the gene indicates that it is not essential for cell viability. Recognisable motifs are present for a nuclear localisation signal, a RING finger and helicase domains. The predicted protein is a member of the SNF2 subfamily of proteins and shows particular homology to the Saccharomyces cerevisiae RAD5 protein. Double mutant analysis demonstrated that the rad8 mutant is not epistatic to mutants in the excision repair pathway (rad13) or checkpoint pathway (rad9). Analysis of radiation sensitivity though the cell cycle indicates that, unlike most other rad mutants, rad8 is most sensitive to irradiation during the G1/S period.  相似文献   

5.
6.
The fission yeast rad31-1 mutant is sensitive to both UV and ionising radiation and exhibits a growth defect at 35 degrees C. In addition, the mutant displays defects in cell morphology and nuclear division at 26 degrees C which are exaggerated at 35 degrees C. We have cloned the rad31 gene and have shown that it is not essential for viability, although cells containing a disrupted rad31 gene grow slowly. The null allele has similar cell and nuclear morphologies to the original allele and displays an extremely high frequency of loss of minichromosomes. rad31 is not required for either the S/M or G2/M checkpoint, however double mutant analysis indicates that rad31 acts in a process which is defective in the checkpoint rad mutants and which involves hus5 . Sequence analysis indicates that rad31 encodes a protein which is related to ubiquitin activating proteins and more particularly to an ORF in Saccharomyces cerevisiae and to the Arabidopsis thaliana AXR1 and human APP-BP1 genes. We have isolated the S.cerevisiae sequence, which we have named RHC31 ( ad31homologue in S. erevisiae), since we show that it can complement the slow growth phenotype and radiation sensitivity of S.pombe rad31.  相似文献   

7.
8.
The rad10, rad16, rad20, and swi9 mutants of the fission yeast Schizosaccharomyces pombe, isolated by their radiation sensitivity or abnormal mating-type switching, have been shown previously to be allelic. We have cloned DNA correcting the UV sensitivity or mating-type switching phenotype of these mutants and shown that the correcting DNA is encompassed in a single open reading frame. The gene, which we will refer to as rad16, is approximately 3 kb in length, contains seven introns, and encodes a protein of 892 amino acids. It is not essential for viability of S. pombe. The predicted protein is the homolog of the Saccharomyces cerevisiae RAD1 protein, which is involved in an early step in excision-repair of UV damage from DNA. The approximately 30% sequence identity between the predicted proteins from the two yeasts is distributed throughout the protein. Two-hybrid experiments indicate a strong protein-protein interaction between the products of the rad16 and swi10 genes of S. pombe, which mirrors that reported for RAD1 and RAD10 in S. cerevisiae. We have identified the mutations in the four alleles of rad16. They mapped to the N-terminal (rad10), central (rad20), and C-terminal (rad16 and swi9) regions. The rad10 and rad20 mutations are in the splice donor sequences of introns 2 and 4, respectively. The plasmid correcting the UV sensitivity of the rad20 mutation was missing the sequence corresponding to the 335 N-terminal amino acids of the predicted protein. Neither smaller nor larger truncations were, however, able to correct its UV sensitivity.  相似文献   

9.
The rad4.116 mutant of the fission yeast Schizosaccharomyces pombe is temperature-sensitive for growth, as well as being sensitive to the killing actions of both ultraviolet light and ionizing radiation. We have cloned the rad4 gene by complementation of the temperature sensitive phenotype of the rad4.116 mutant with a S. pombe gene bank. The rad4 gene fully complemented the UV sensitivity of the rad4.116 mutant. The gene is predicted to encode a protein of 579 amino acids with a basic tail, a possible zinc finger and a nuclear location signal. The amino terminal part of the predicted rad4 ORF contains two short regions of similarity to the C-terminal part of the human XRCC1 gene. Codon usage suggests that the gene is very poorly expressed, and this was confirmed by RNA studies. Gene disruption showed that the rad4 gene was essential for the mitotic growth of S. pombe.  相似文献   

10.
DNA double-strand breaks (DSBs) arise through both replication errors and from exogenous events such as exposure to ionizing radiation. DSBs are potentially lethal, and cells have evolved a highly conserved mechanism to detect and repair these lesions. This mechanism involves phosphorylation of histone H2AX (γH2AX) and the loading of DNA repair proteins onto the chromatin adjacent to the DSB. It is now clear that the chromatin architecture in the region surrounding the DSB has a critical impact on the ability of cells to mount an effective DNA damage response. DSBs promote the formation of open, relaxed chromatin domains which are spatially confined to the area surrounding the break. These relaxed chromatin structures are created through the coupled action of the p400 SWI/SNF ATPase and histone acetylation by the Tip60 acetyltransferase. The resulting destabilization of nucleosomes at the DSB by Tip60 and p400 is required for ubiquitination of the chromatin by the RNF8 ubiquitin ligase, and for the subsequent recruitment of the brca1 complex. Chromatin dynamics at DSBs can therefore exert a powerful influence on the process of DSB repair. Further, there is emerging evidence that the different chromatin structures in the cell, such as heterochromatin and euchromatin, utilize distinct remodeling complexes and pathways to facilitate DSB. The processing and repair of DSB is therefore critically influenced by the nuclear architecture in which the lesion arises.Key words: p400, chromatin remodeling, DNA repair, NuA4, H2AX, acetylation, nucleosome, tip60Damage to cellular DNA can occur through multiple pathways, including exposure to genotoxic agents, the production of endogenous reactive oxygen species or errors which arise during DNA replication. To combat this continuous assault on the genome, mammalian cells have evolved multiple DNA repair pathways. The most challenging lesions to repair are DSBs, which physically cleave the DNA strand. DSBs can occur through exposure to IR, the collapse of replication forks or during the processing of certain types of DNA damage. Over the last 20 years, a clear picture of how the cell detects and repairs DSBs has emerged.1,2 The earliest event in the cell''s response to DSBs is the rapid recruitment of the ATM kinase, followed by the phosphorylation of histone H2AX (termed γH2AX) on large chromatin domains which extend for 100''s of kilobases on either side of the DSB.3 The mdc1 scaffold protein is then recruited to γH2AX,4 providing a docking platform for the recruitment and retention of additional DNA repair proteins, including the MRN complex, the RNF8 ubiquitin ligase and the brca1 and 53BP1 proteins, onto the chromatin at DSBs.57 Eventually, this spreading of DNA repair proteins along the chromatin from the DSB leads to the formation of IRIF, which can be visualized by immunofluorescent techniques. DSBs are then repaired by NHEJ, in which broken DNA ends are directly religated, or by HR, using the undamaged sister chromatid (present during S-phase) as a template. A defining characteristic of DSB repair is the dominant role that chromatin structure plays in the detection and repair of these lesions. In this review, we will examine recent work exploring how remodeling of the chromatin structure adjacent to DSBs plays a key role in the repair of DSBs.  相似文献   

11.
12.
To identify novel genes involved in DNA double-strand break (DSB) repair, we previously isolated Schizosaccharomyces pombe mutants which are hypersensitive to methyl methanesulfonate (MMS) and synthetic lethals with rad2. This study characterizes one of these mutants, rad60-1. The gene that complements the MMS sensitivity of this mutant was cloned and designated rad60. rad60 encodes a protein with 406 amino acids which has the conserved ubiquitin-2 motif found in ubiquitin family proteins. rad60-1 is hypersensitive to UV and gamma rays, epistatic to rhp51, and defective in the repair of DSBs caused by gamma-irradiation. The rad60-1 mutant is also temperature sensitive for growth. At the restrictive temperature (37 degrees C), rad60-1 cells grow for several divisions and then arrest with 2C DNA content; the arrested cells accumulate DSBs and have a diffuse and often aberrantly shaped nuclear chromosomal domain. The rad60-1 mutant is a synthetic lethal with rad18-X, and expression of wild-type rad60 from a multicopy plasmid partially suppresses the MMS sensitivity of rad18-X cells. rad18 encodes a conserved protein of the structural maintenance of chromosomes (SMC) family (A. R. Lehmann, M. Walicka, D. J. Griffiths, J. M. Murray, F. Z. Watts, S. McCready, and A. M. Carr, Mol. Cell. Biol. 15:7067-7080, 1995). These results suggest that S. pombe Rad60 is required to repair DSBs, which accumulate during replication, by recombination between sister chromatids. Rad60 may perform this function in concert with the SMC protein Rad18.  相似文献   

13.
14.
Replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein present in all eukaryotes. In vitro studies have implicated RPA in simian virus 40 DNA synthesis and nucleotide excision repair, but little direct information is available about the in vivo roles of the protein. We report here the cloning of the largest subunit of RPA (rpa1+) from the fission yeast Schizosaccharomyces pombe. The rpa1+ gene is essential for viability and is expressed specifically at S phase of the cell cycle. Genetic analysis revealed that rpa1+ is the locus of the S. pombe radiation-sensitive mutation rad11. The rad11 allele exhibits pleiotropic effects consistent with an in vivo role for RPA in both DNA repair and DNA synthesis. The mutant is sensitive to both UV and ionizing radiation but is not defective in the DNA damage-dependent checkpoint, consistent with the hypothesis that RPA is part of the enzymatic machinery of DNA repair. When incubated in hydroxyurea, rad11 cells initially arrest with a 1C DNA content but then lose viability coincident with reentry into S phase, suggesting that DNA synthesis is aberrant under these conditions. A significant fraction of the mutant cells subsequently undergo inappropriate mitosis in the presence of hydroxyurea, indicating that RPA also plays a role in the checkpoint mechanism that monitors the completion of S phase. We propose that RPA is required to maintain the integrity of replication complexes when DNA replication is blocked. We further suggest that the rad11 mutation leads to the premature breakdown of such complexes, thereby preventing recovery from the hydroxyurea arrest and eliminating a signal recognized by the S-phase checkpoint mechanism.  相似文献   

15.
16.
Synapsis is the process by which paired chromosome homologues closely associate in meiosis before crossover. In the synaptonemal complex (SC), axial elements of each homologue connect through molecules of SYCP1 to the central element, which contains the proteins SYCE1 and -2. We have derived mice lacking SYCE2 protein, producing males and females in which meiotic chromosomes align and axes form but do not synapse. Sex chromosomes are unaligned, not forming a sex body. Additionally, markers of DNA breakage and repair are retained on the axes, and crossover is impaired, culminating in both males and females failing to produce gametes. We show that SC formation can initiate at sites of SYCE1/SYCP1 localization but that these points of initiation cannot be extended in the absence of SYCE2. SC assembly is thus dependent on SYCP1, SYCE1, and SYCE2. We provide a model to explain this based on protein-protein interactions.  相似文献   

17.
18.
Using the method of filter elution of double stranded DNA under neutral conditions we have shown that most of gamma-ray induced double strand breaks (DSB) are rejoined in both mammalian and bacterial cells. Rejoining also occurs in the G1 phase in V79 Chinese hamster cells and under different growth conditions. Within 8 minutes at 37 C, half the breaks are rejoined. The rejoining in E. coli is equally fast and depends on the presence of DNA ligase. Some of the breaks in E. coli rejoin slowly, and these require rec+. The non-rejoined DSB are distributed over the DNA without any preference for the nucleosomal or the linker structure in the chromosome. Two kinds of DSB rejoining are discriminated, a fast process of DNA ligation and a slower process involving rec functions.  相似文献   

19.
Yu Y  Mahaney BL  Yano K  Ye R  Fang S  Douglas P  Chen DJ  Lees-Miller SP 《DNA Repair》2008,7(10):1680-1692
Nonhomologous end joining (NHEJ) is the major pathway for the repair of DNA double strand breaks (DSBs) in human cells. NHEJ requires the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), Ku70, Ku80, XRCC4, DNA ligase IV and Artemis, as well as DNA polymerases mu and lambda and polynucleotide kinase. Recent studies have identified an additional participant, XLF, for XRCC4-like factor (also called Cernunnos), which interacts with the XRCC4-DNA ligase IV complex and stimulates its activity in vitro, however, its precise role in the DNA damage response is not fully understood. Since the protein kinase activity of DNA-PKcs is required for NHEJ, we asked whether XLF might be a physiological target of DNA-PK. Here, we have identified two major in vitro DNA-PK phosphorylation sites in the C-terminal region of XLF, serines 245 and 251. We show that these represent the major phosphorylation sites in XLF in vivo and that serine 245 is phosphorylated in vivo by DNA-PK, while serine 251 is phosphorylated by Ataxia-Telangiectasia Mutated (ATM). However, phosphorylation of XLF did not have a significant effect on the ability of XLF to interact with DNA in vitro or its recruitment to laser-induced DSBs in vivo. Similarly, XLF in which the identified in vivo phosphorylation sites were mutated to alanine was able to complement the DSB repair defect as well as radiation sensitivity in XLF-deficient 2BN cells. We conclude that phosphorylation of XLF at these sites does not play a major role in the repair of IR-induced DSBs in vivo.  相似文献   

20.
DNA polymerase lambda (polλ) is a recently identified DNA polymerase whose cellular function remains elusive. Here we show, that polλ participates at the molecular level in a chromosomal context, in the repair of DNA double strand breaks (DSB) via non-homologous end joining (NHEJ) in mammalian cells. The expression of a catalytically inactive form of polλ (polλDN) decreases the frequency of NHEJ events in response to I-Sce-I-induced DSB whereas inactivated forms of its homologues polβ and polμ do not. Only events requiring DNA end processing before ligation are affected; this defect is associated with large deletions arising in the vicinity of the induced DSB. Furthermore, polλDN-expressing cells exhibit increased sensitization and genomic instability in response to ionizing radiation similar to that of NHEJ-defective cells. Our data support a requirement for polλ in repairing a subset of DSB in genomic DNA, thereby contributing to the maintenance of genetic stability mediated by the NHEJ pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号