首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
C D Linden  J K Blasie  C F Fox 《Biochemistry》1977,16(8):1621-1625
The lipid fatty acid composition of the cytoplasmic membranes of Escherichia coli can be varied by growing an unsaturated fatty acid auxotroph in the presence of different fatty acid supplements. Electron spin resonance (ESR) studies of spin-label partitioning into the cytoplasmic membranes of different lipid fatty acid compositions as a function of temperature have been interpreted as indicating a broad order-to-disorder transition in the membrane lipids, the end points of the transition depending upon the fatty acid composition. We have utilized x-ray diffraction to confirm the ESR studies for three different fatty acid supplements (oleic, elaidic, and bromostearic). We found that the characteristic end-point temperatures detected by ESR were indeed the end-point temperatures of a broad order-to-disorder transition of the cytoplasmic membrane lipids. In addition, Patterson functions calculated from lamellar x-ray diffraction from partially oriented cytoplasmic membranes indicate a decrease in average membrane thickness upon fatty acid chain melting.  相似文献   

2.
Microbial lipids produced by oleaginous microorganisms, also called microbial oils and single cell oils (SCOs), are very promising sources for several oil industries. The exploration of efficient oleaginous yeast strains, meant to produce both high-quantity and high-quality lipids for the production of biodiesel, oleochemicals, and the other high value lipid products, have gained much attention. At present, the number of oleaginous yeast species that have been discovered is 8.2% of the total number of known yeast species, most of which have been isolated from their natural habitats. To explore high lipid producing yeasts, different methods, including high-throughput screening methods using colorimetric or fluorometric measures, have been developed. Understanding of the fatty acid composition profiles of lipids produced by oleaginous yeasts would help to define target lipid-related products. For lipid production, the employment of low-cost substrates suitable for yeast growth and lipid accumulation, and efficient cultivation processes are key factors for successfully increasing the amount of the accumulated lipid yield while decreasing the cost of production.  相似文献   

3.
Oxygenated fatty acids such as ricinoleic acid and vernolic acid can serve in the industry as synthons for the synthesis of a wide range of chemicals and polymers traditionally produced by chemical conversion of petroleum derivatives. Oxygenated fatty acids can also be useful to synthesize specialty chemicals such as cosmetics and aromas. There is thus a strong interest in producing these fatty acids in seed oils (triacylglycerols) of crop species. In the last 15 years or so, much effort has been devoted to isolate key genes encoding proteins involved in the synthesis of oxygenated fatty acids and to express them in the seeds of the model plant Arabidopsis thaliana or crop species. An often overlooked but rich source of enzymes catalyzing the synthesis of oxygenated fatty acids and their esterification to glycerol is the biosynthetic pathways of the plant lipid polyesters cutin and suberin. These protective polymers found in specific tissues of all higher plants are composed of a wide variety of oxygenated fatty acids, many of which have not been reported in seed oils (e.g. saturated ω-hydroxy fatty acids and α,ω-diacids). The purpose of this mini-review is to give an overview of the recent advances in the biosynthesis of cutin and suberin and discuss their potential utility in producing specific oxygenated fatty acids for specialty chemicals. Special emphasis is given to the role played by specific acyltransferases and P450 fatty acid oxidases. The use of plant surfaces as possible sinks for the accumulation of high value-added lipids is also highlighted.  相似文献   

4.
Fatty acids of acyl steryl glycoside (acyl SG) of different plants producing both green and photosynthetically inactive tissue have been analyzed. The major components are in all cases 16:0, 18:2 and 18:3 acids. The fatty acid composition of acyl SG of green parts is very similar to that of etiolated, pale or storage tissue of the same plant. Generally the degree of saturation of acyl SG is higher than that of the corresponding total lipid. Acyl SG tends to be more saturated in green parts than in colorless tissues of the same plant. Conversely, total lipid of green tissue containing large amounts of galactolipids and 18:3 acid is much less saturated than that of photosynthetically inactive tissue. Though containing smaller amounts of 18:3, and in some cases unsaturated C16 acids, acyl SG does not reflect the drastic increase of these acids in the total lipid of green tissue. It is concluded that fatty acids of acyl SG originate mainly from an acyl donor other than chloroplast galactolipids.  相似文献   

5.
Algae have been explored for renewable energy, nutraceuticals, and value-added products. However, low lipid yield is a significant impediment to its commercial viability. Genetic engineering can improve the fatty acid profile of algae without compromising its growth. This study introduced the diacylglycerol acyltransferase (BnDGAT) gene from Brassica napus into Chlorella sorokiniana-I, a fast-growing and thermotolerant natural strain isolated from wastewater, which increased its intracellular lipid accumulation. Hygromycin-resistant cells were selected, and enhanced green florescence protein fluorescence was used to distinguish pure transgenic cell lines from mixed cultures. Compared to the wild type, BnDGAT expression in transgenic C. sorokiniana-I caused a threefold increase in non-polar lipid and a twofold increase in polyunsaturated fatty acids. Nile red staining reaffirmed the presence of higher intracellular lipid bodies in transgenic cells. There was a substantial alteration in the fatty acid profile of transgenic alga expressing BnDGAT. The non-essential omega 9 (C18: 1) fatty acid decreased (5%–7% from 18%), while alpha-linolenic acid, an essential omega 3 fatty acid (C18: 3), was increased (23%–24% from 11%). This study substantiates a valuable strategy for enhancing essential omega-3 fatty acids and neutral lipids to improve its nutritional value for animal feed. The increased lipid productivity should reduce the cost of producing fatty acid methyl esters (FAME). Improved FAME quality should address the clouding issues in cold regions.  相似文献   

6.
Factors controlling the lipid sensitizers level: the composition of fatty lipid acids, their antioxidative activity, the enzyme systems reactivity (superoxide dismutase, catalase, glutatione peroxidase and glutatione reductase) have been studied in yeast cells with different radioresistance. In six lines of yeast cells the leading role of superoxide dismutase--one of the regulators of lipid peroxidation have been demonstrated in cells native radioresistance formation.  相似文献   

7.
Production of novel oils in plants   总被引:7,自引:0,他引:7  
We have now isolated the great majority of genes encoding enzymes of storage oil biosynthesis in plants. In the past two years, particular progress has been made with acyltransferases, ketoacyl-acyl carrier protein synthetases and with desaturases and their relatives. In some cases, these enzymes have been reengineered to create novel products. Nevertheless, the single or multiple insertion of such transgenes into oil crops has not always led to the desired phenotype. We are only now beginning to appreciate some of the complexities of storage and membrane lipid formation, such as acyl group remodelling and the turnover of unusual fatty acids. This understanding will be vital for future attempts at the rational engineering of transgenic oil crops. In parallel with this, the domestication of plants already synthesising useful fatty acids should be considered as a real alternative to the transgenic approach to producing novel oil crops.  相似文献   

8.
Chediak-Higashi syndrome (CHS) is an autosomal recessive disease characterized by the presence of abnormally large cytoplasmic organelles in all body granule producing cells. The molecular mechanism for this disease is still unknown. Functional disorders in membrane-related processes have been reported. Erythrocyte membranes from four CHS patients and 15 relatives including obligatory heterozygous were studied to examine potential alterations in the lipid and fatty acid profile of erythrocyte membranes associated with this syndrome. Plasma concentrations of cholesterol, triglycerides, phospholipids, and apolipoproteins AI and B100, and the lipid components of very low-, intermediate-, low- and high-density lipoproteins were also determined. CHS erythrocyte membranes were found to be enriched with lipids in relation to protein and to show: (1) an increase in cholesterol and choline-containing phospholipids (sphingomyelin and phosphatidylcholine) that predominate in the outer monolayer, which is higher than the increase in phosphatidylserine and phosphatidylethanolamine, that are chiefly limited to the inner monolayer in normal red blood cells; (2) a relative palmitic acid and saturated fatty acid increase and arachidonic acid and unsaturated fatty acid decrease, this resulting in a lower unsaturation index than controls. Changes in CHS erythrocyte membrane lipids seem to be unrelated to serum lipid disorders as plasma lipid and apolipoprotein concentrations were apparently in the normal range, with the exception of a modest hypertriglyceridemia in patients and relatives and a decreased concentration of HDL cholesterol in patients. These findings indicate that CHS erythrocyte membranes contain an abnormal lipid matrix with which membrane proteins are defectively associated. The anomalous CHS membrane composition can be explained on the postulated effects of the CHS1/Lyst gene.  相似文献   

9.
Doxorubicin cardiotoxicity is associated with the generation of free radicals, and involves not only lipid peroxidation but also a decreased biosynthesis of highly unsaturated fatty acids, leading to significant modification in cardiomyocyte fatty acid composition. We have evaluated whether naturally occurring antioxidants could counteract this side-effect. Green tea is an excellent source of catechins; we supplemented cultured rat cardiomyocytes with different green tea extracts to relate their catechin content and composition to their ability in protecting cells against doxorubicin-induced damage. The determination of total lipid fatty acid composition, of conjugated diene production (indicator of lipid peroxidation), and of lactate dehydrogenase release revealed that supplementation with tea extracts could counteract significant modifications in the fatty acyl pattern due to doxorubicin exposure, although to different extents. These differences could be ascribed to the different total catechin content and to qualitative differences among the tea extracts, determined by HPLC analysis.  相似文献   

10.
Omega-3 (ω-3) very long chain polyunsaturated fatty acids (VLC-PUFAs) such as eicosapentaenoic acid (EPA; 20:5 Δ5,8,11,14,17) and docosahexaenoic acid (DHA; 22:6 Δ4,7,10,13,16,19) have been shown to have significant roles in human health. Currently the primary dietary source of these fatty acids are marine fish; however, the increasing demand for fish and fish oil (in particular the expansion of the aquaculture industry) is placing enormous pressure on diminishing marine stocks. Such overfishing and concerns related to pollution in the marine environment have directed research towards the development of a viable alternative sustainable source of VLC-PUFAs. As a result, the last decade has seen many genes encoding the primary VLC-PUFA biosynthetic activities identified and characterized. This has allowed the reconstitution of the VLC-PUFA biosynthetic pathway in oilseed crops, producing transgenic plants engineered to accumulate ω-3 VLC-PUFAs at levels approaching those found in native marine organisms. Moreover, as a result of these engineering activities, knowledge of the fundamental processes surrounding acyl exchange and lipid remodelling has progressed. The application of new technologies, for example lipidomics and next-generation sequencing, is providing a better understanding of seed oil biosynthesis and opportunities for increasing the production of unusual fatty acids. Certainly, it is now possible to modify the composition of plant oils successfully, and, in this review, the most recent developments in this field and the challenges of producing VLC-PUFAs in the seed oil of higher plants will be described.  相似文献   

11.
The composition of membrane fatty lipid acids and the content of polyunsaturation of fatty acids have been shown not to be the leading factors in the formation of radioresistance cells.  相似文献   

12.
The review deals with peculiarities of molecular mechanisms of metabolism regulation of fatty acids and other lipid components in preruminant and ruminant animals (i.e. before and after formation of the functioning of the mixed microbial population in the rumen). A characteristic of possible biosynthesis regulation processes, transformation, transport, utilization and catabolism of fatty acids with different molecular masses and peculiarities and of triacylglycerols and other lipid substances in the liver compartments, skeletal and heart muscle cells has been shown. Peculiarities of intracellular changes in metabolism of fatty acids and apolipoprotein B in the liver of neonatal calves under development of alimentary enteropathology have been considered. Main factors in the mechanism of regulation of intracellular metabolism of fatty acids and lipid substances have been defined.  相似文献   

13.
The initial rates of NAD- and NADPH-dependent enzymic and Fe+-ascorbic acid-dependent nonenzymic lipid peroxidation have been measured in synaptosomes from the brain of 4 teleost species. The rates of peroxidation were compared with lipid composition and fatty acid composition of total lipids in order to reveal factors accounting for the intensity of peroxidation in the excitable membranes from the brain of ectotherms. The data obtained indicate that the rates of enzymic lipid peroxidation do not correlate with lipid and fatty acid compositions, depending on the efficiency of production of oxygen in the active form by pyridine nucleotide-dependent enzymic systems. Activation of lipid peroxidation during adaptation of animals to the environment may be considered as one of the mechanisms which account for compensatory changes in fatty acid composition of the membrane lipids.  相似文献   

14.
Lipopolysaccharides were isolated from the cell walls of Vibrio cholerae 569 B (Inaba) and El-tor (Inaba). Chemical analysis revealed the presence of glucose, fructose, mannose, heptose, rhamnose, ethanolamine, fatty acids and glucosamine. The lipopolysaccharides do not contain 2-keto-3-deoxyoctonate, the typical linking sugar of polysaccharide and lipid moieties of enterobacterial lipopolysaccharides. Galactose, a typical core polysaccharide component of many gram-negative bacteria was also absent from lipopolysaccharides of these organisms. By hydrolysis in 1% acetic acid, the lipopolysaccharides have been separated into a polysaccharide part (degraded polysaccharide) and a lipid part (lipid A). Components of degraded polysaccharide and lipid A moiety were identified and determined. The lipid A fractions contained fatty acids, phosphorus and glucosamine. All the neutral sugars detected in lipopolysaccharides were shown to be the constituents of its polysaccharide moiety. The fatty acid analysis of lipopolysaccharide and lipid A showed the presence of both hydroxy and non hydroxy acids. They were different from those of lipids extracted from cell walls before the extraction of lipopolysaccharides. 3-Hydroxylauric and 3-hydroxymyristic acids predominated in lipopolysaccharide and lipid A of Vibrio cholerae and El-tor (Inaba).  相似文献   

15.
The influence of culture age and nitrogen concentration on the distribution of fatty acids among the different acyl lipid classes has been studied in continuous cultures of the microalga Phaeodactylum tricornutum. The culture age was tested in the range of 1.15-7 days, controlled by adjusting the dilution rate of fresh medium supplied. The effect of nitrogen concentration was tested from saturating conditions to starvation by modifying nitrate concentration in the fresh medium. Culture age had almost no influence on the fatty acid content; 16:0, 16:3 and 20:5 increased moderately wherein the level of 16:1 decreased when the culture age decreased. Culture age had no effect on the total fatty acid content that remained around 11% of dry weight. Conversely, culture age had a greater impact on lipid classes, producing changes in amounts of triacylglycerols (TAG) which ranged between 43% and 69%, and galactolipids (GLs) that oscillated between 20% and 40%. In general, the content of polar lipids of the biomass decreased with culture age. The other factor assayed, nitrogen content, affected the fatty acid profile. Saturated and monounsaturated fatty acids accumulated when the nitrogen concentration was decreased. The experiments regarding the effect of nitrogen concentration on lipid species were carried out with cells of an average age of 3.5 days. A decrease of the nitrogen concentration caused the GL fraction to decrease from 21 to 12%. Conversely, both neutral lipids (NLs) and phospolipids (PLs) increased from about 73 to 79% and from 6 to 8%, respectively. In these experiments, TAG was the lipid class with the highest increase, from 69 to 75%.  相似文献   

16.
Although several studies have analyzed the fatty acid profile of phospholipids (PL) and, to a lesser degree, triacylglycerols (TG) in one or more tissues concurrently, a systematic comparison of the fatty acid composition of different tissues and/or lipid classes is lacking. The purpose of the present study was to compare the fatty acid composition of major lipid classes (PL and TG) in the rat serum, soleus muscle, extensor digitorum longus muscle and the heart. Lipids were extracted from these tissues and analyzed by a combination of thin-layer chromatography and gas chromatography. We found many significant differences in various tissues and lipid classes. Serum had the most distinct fatty acid profile in PL but this "uniqueness" was less apparent in TG, where differences among tissues were in general less frequent than in PL. These two skeletal muscles exhibited similar fatty acid composition in both lipid classes despite their different muscle fiber type composition, denoting that fiber type is not a major determinant of the fatty acid composition of rat skeletal muscle. The fatty acid profile of heart PL was the most different from that of the other tissues examined. PL were rich in polyunsaturated fatty acids, whereas TG were rich in monounsaturated fatty acids. Although the reasons for the differences in fatty acid profile among the tissues examined are largely unknown, it is likely that these differences have an impact upon numerous biological functions.  相似文献   

17.
The 12/15-lipoxygenase enzymes react with fatty acids producing active lipid metabolites that are involved in a number of significant disease states. The latter include type 1 and type 2 diabetes (and associated complications), cardiovascular disease, hypertension, renal disease, and the neurological conditions Alzheimer’s disease and Parkinson’s disease. A number of elegant studies over the last thirty years have contributed to unraveling the role that lipoxygenases play in chronic inflammation. The development of animal models with targeted gene deletions has led to a better understanding of the role that lipoxygenases play in various conditions. Selective inhibitors of the different lipoxygenase isoforms are an active area of investigation, and will be both an important research tool and a promising therapeutic target for treating a wide spectrum of human diseases.  相似文献   

18.
The adult dustywing, Semidalis flinti Meinander (Neuroptera: Coniopterygidae), begins producing circular-shaped waxy particles after eclosion. The waxy material, which forms the particles, is extruded from individual pores found in clusters on the abdomen. Pores also are present in two rows of three pores on the frontalis and two pores on the first segment of each antennae. The pores have a rosette-like appearance and each pore extrudes dual waxy ribbons. As each ribbon extends a short distance out of the pore, it begins to curl back on itself until the end makes contact with the ribbon. The curled end then breaks free from the extruding ribbon to form the circular waxy particles with fluted edges approximately 2.75-microm diameter. The adults use the particles to cover all parts of their body except for their eyes and appear to lightly coat their antennae. The lipid portion of the particles consists largely of free fatty acids, almost exclusively the 24-carbon fatty acid, tetracosanoic acid. Minor lipid classes are hydrocarbons, fatty alcohols and unidentified material.  相似文献   

19.
The rotational dynamics of spin-labelled fatty acids of different chainlengths (9, 10, 12, 14, 16 and 18 C-atoms) and different positions of labelling (5-C, 6-C and 7-C) have been studied in dimyristoylphosphatidylcholine bilayers using EPR spectroscopy. The segmental flexibility at a given label position is found to vary considerably with the length of the lipid chain, when this is less than that of the dimyristoylphosphatidylcholine host lipid. For both the charged and protonated forms of labelled fatty acids with chainlengths of 9, 10, and 12 C-atoms, the spectral anisotropy decreases steadily with decreasing chainlength in fluid phase bilayers. The differences become especially pronounced at the 7-C position of caprylic acid and the 6-C position of nonanoic acid, where the label is located close to the terminal methyl end of the chain. An unusually high degree of motional freedom is found for both these spin-labels, even in gel phase bilayers. There is relatively little effect of chainlength of the labelled fatty acid when this is longer or comparable to that of the host lipid (i.e., for fatty acid chainlengths of 18, 16 and 14 C-atoms), except if the label position is close to the terminal methyl end of the chain. The implications for the heterogeneous lipid chain composition in biological membranes are discussed.  相似文献   

20.
The lipid moieties of two lipid A's isolated from the phenolic and aqueous fractions of lipopolysaccharide from Rhizobium tropici CIAT899 have been studied. Several 3-hydroxy fatty acids and two long-chain hydroxy fatty acids, 27-hydroxyoctacosanoic acid, and 29-hydroxytriacontanoic acid were identified; the ratios of these acids are the same in both lipid A's. These results can be used for chemotaxonomic purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号