首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolutionary history of human chromosome 7   总被引:6,自引:0,他引:6  
We report on a comparative molecular cytogenetic and in silico study on evolutionary changes in human chromosome 7 homologs in all major primate lineages. The ancestral mammalian homologs comprise two chromosomes (7a and 7b/16p) and are conserved in carnivores. The subchromosomal organization of the ancestral primate segment 7a shared by a lemur and higher Old World monkeys is the result of a paracentric inversion. The ancestral higher primate chromosome form was then derived by a fission of 7b/16p, followed by a centric fusion of 7a/7b as observed in the orangutan. In hominoids two further inversions with four distinct breakpoints were described in detail: the pericentric inversion in the human/African ape ancestor and the paracentric inversion in the common ancestor of human and chimpanzee. FISH analysis employing BAC probes confined the 7p22.1 breakpoint of the pericentric inversion to 6.8 Mb on the human reference sequence map and the 7q22.1 breakpoint to 97.1 Mb. For the paracentric inversion the breakpoints were found in 7q11.23 between 76.1 and 76.3 Mb and in 7q22.1 at 101.9 Mb. All four breakpoints were flanked by large segmental duplications. Hybridization patterns of breakpoint-flanking BACs and the distribution of duplicons suggest their presence before the origin of both inversions. We propose a scenario by which segmental duplications may have been the cause rather than the result of these chromosome rearrangements.  相似文献   

2.
Heterozygotes for pericentric inversions are expected to be semisterile because recombination in the inverted region produces aneuploid gametes. Newly arising pericentric inversions should therefore be quickly eliminated from populations by natural selection. The occasional polymorphism for such inversions and their fixation among closely related species have supported the idea that genetic drift in very small populations can overcome natural selection in the wild. We studied the effect of 7 second-chromosome and 30 third-chromosome pericentric inversions on the fertility of heterokaryotypic Drosophila melanogaster females. Surprisingly, fertility was not significantly reduced in many cases, even when the inversion was quite large. This lack of underdominance is almost certainly due to suppressed recombination in inversion heterozygotes, a phenomenon previously observed in Drosophila. In the large sample of third-chromosome inversions, the degree of underdominance depends far more on the position of breakpoints than on the inversion's length. Analysis of these positions shows that this chromosome has a pair of ``sensitive sites' near cytological divisions 68 and 92: these sites appear to reduce recombination in a heterozygous inversion whose breakpoints are nearby. There may also be ``sensitive sites' near divisions 31 and 49 on the second chromosome. Such sites may be important in initiating synapsis. Because many pericentric inversions do not reduce the fertility of heterozyotes, we conclude that the observed fixation or polymorphism of such rearrangements in nature does not imply genetic drift in very small populations.  相似文献   

3.
In a girl presenting with features of Wolf-Hirschhorn syndrome, cytogenetic and molecular cytogenetic analysis revealed a rearranged chromosome 4 with monosomy of the distal bands 4pter-->4p16.2 and trisomy of the distal bands 4q35.1-->4qter [rec dup(4q)] due to a large, paternal pericentric inversion. In the following two pregnancies, prenatal diagnosis showed the same imbalance in one fetus and a reverse segmental imbalance [rec dup(4p)] in the other. We discuss the recombination risk of the given inversion with respect to the size of the inverted segment and the viability of the recombinants. The high frequency of recombinants in this family and others suggests a high recurrence risk in similar cases with large pericentric inversions comprising almost entire chromosomes.  相似文献   

4.
Summary The Leuven cytogenetic centre experience on pericentric inversion in man is discussed with exclusion of the pericentric inversions of the heterochromatic blocks of chromosomes 1 and 9. In a total of 51,500 patients, referred for constitutional chromosome analysis during the period 1970–1985, pericentric inversions were found in 24 index patients. The breakpoints detected in these different pericentric inversions are summarized and compared to those found in previous reports. Bands 2p13, 2q21, 5q31, 6c21, 10q22, and 12q13 were shown to be repeatedly involved in the different studies and, furthermore, breakpoints at bands 2q11, 5p13, 5p15, 5q13, 7q11, 11q25, and 14p11 were present in this study as well as in our previous review on reciprocal autosomal translocations. In 13 familial pericentric inversions, even after exclusion of all inversion carrier probands, a 1.6:1 excess of pericentric inversion carriers versus karyotypically normal progeny was observed. While chromosomally unbalanced offspring represent 3.5% of all chromosomally investigated liveborns of the present study, 7.1% of all liveborn inversion carrier offspring presented with a mental retardation and/or multiple congenital anomalies (MR/MCA) problem. Additional chromosomal abnormalities, i.e. a 21 trisomy and an accessory small ring chromosome were observed in two pericentric inversion carriers. These data and results are discussed and compared to the data available in the literature.  相似文献   

5.
A. Daniel 《Human genetics》1981,56(3):321-328
Summary The potential chromosomal imbalance in offspring of pericentric inversion heterozygotes can be evaluated by measuring (% of haploid autosomal length, % HAL) the chromosomal segments distal to the breakpoints in the inversion. These distal segments were measured in presently reported and published cases of pericentric inversions, divided into two ascertainment groups: (I) those ascertained through recombinant offspring and (II) those ascertained through balanced heterozygotes. The distal segments in group II inversions were significantly larger than those of group I, i.e., the potentially larger chromosomal imbalances were not observed in full-term offspring. These results are discussed in relation to the model of risk of abnormal offspring in the progeny of heterozygotes for structural rearrangements (the chromosome imbalance size-viability model). The mean distal segment sizes for group I and group II pericentric inversions were respectively not significantly different from the mean interchange segment size for a sample of reciprocal translocations divided into the same two ascertainment groups. It was concluded that the restrictions on the size (% HAL) of chromosomal imbalance in offspring surviving until term are similar whether this imbalance arises from reciprocal translocations or pericentric inversions.  相似文献   

6.
Crossover within a pericentric inversion produces reciprocal recombinant chromosomes that are duplicated/deficient for all chromatin distal to the breakpoints. In view of this fact, a new technique is presented for estimating the frequency of recombination within pericentric inversions. YAC probes were selected from within the q- and p-arm flanking regions of two human inversions, and two-color FISH analysis was performed on sperm from heterozygous inversion carriers. A total of 6,006 sperm were analyzed for chromosome 1 inversion (p31q12), and 3,168 were analyzed for chromosome 8 inversion (p23q22). Both inversions displayed suppression of crossing-over, although the amount of suppression differed between the two inversions. The recombination frequency of 13.1% recorded for chromosome 8 inversion was similar to the frequency of 11.4% previously estimated by the human/hamster-fusion method. For chromosome 1 inversion, the recombination frequency of 0. 4% reported here was below the limits of detection of the fusion technique. The simplicity of the FISH technique and the ease of scoring facilitate analysis of a sample-population size much larger than previously had been possible.  相似文献   

7.
A fetus with recombinant of chromosome 8 inherited from her carrier father   总被引:3,自引:0,他引:3  
Summary A pericentric inversion of chromosome 8, inv(8)(p23q22), in a male carrier resulted in an unbalanced recombinant, rec(8)dup q, inv(8)(p23q22), which was diagnosed prenatally. The features seen in the aborted fetus resembled the features seen in a previously affected child who received the identical recombinant from her carrier mother. In this particular inversion involving chromosome 8, both male and female carriers risk producing an unbalanced progeny. Different familial pericentric inversions are reviewed for the presence or absence of unbalanced recombinants.  相似文献   

8.
In addition to the fusion of human chromosome 2, nine pericentric inversions are the most conspicuous karyotype differences between humans and chimpanzees. In this study we identified the breakpoint regions of the pericentric inversion of chimpanzee chromosome 11 (PTR 11) homologous to human chromosome 9 (HSA 9). The break in homology between PTR 11p and HSA 9p12 maps to pericentromeric segmental duplications, whereas the breakpoint region orthologous to 9q21.33 is located in intergenic single-copy sequences. Close to the inversion breakpoint in PTR 11q, large blocks of alpha satellites are located, which indicate the presence of the centromere. Since G-banding analysis and the comparative BAC analyses performed in this study imply that the inversion breaks occurred in the region homologous to HSA 9q21.33 and 9p12, but not within the centromere, the structure of PTR 11 cannot be explained by a single pericentric inversion. In addition to this pericentric inversion of PTR 11, further events like centromere repositioning or a second smaller inversion must be assumed to explain the structure of PTR 11 compared with HSA 9.  相似文献   

9.
Familial pericentric and paracentric inversions of chromosome 1   总被引:1,自引:1,他引:0  
Summary We investigated 33 individuals (21 carriers) from one family with a pericentric inversion involving a large part of chromosome 1 (1p36.11q32). In addition, we investigated 15 individuals (10 carriers) from another family with a paracentric inversion of a small part of chromosome 1(1p321p36.1). In each family, the index patient was ascertained because three miscarriages had occurred. Each carrier of these inversions was phenotypically normal. If the miscarriages of the index patients are excluded, the frequency of recognized miscarriages among the carriers of childbearing age was 9% (4 of 46) for the family with pericentric inversion and 17% (4 of 23) for the family with paracentric inversion. One of the pericentric inv(1) carriers had had a stillborn daughter. The carriers of the pericentric inversion who were of childbearing age had 41 children; carriers of the paracentric inversion who were of childbearing age had 19 children. No live-born children with birth defects were observed in either family. This evidence, together with the low frequency of miscarriages, suggests that crossover within the inversion loop occurs much less frequently than might be expected from the large size of this inversion. Our investigation suggests that the risk of recognized miscarriages, stillbirths, and live-born children with recombinant chromosomes who have birth defects may be much lower for inv(1) carriers than previously reported. The risk of having a malformed child because of a recombinant chromosome is probably less than 3% for carriers of the pericentric inversion and less than 6% for the carriers of the paracentric inversion.  相似文献   

10.
It has been demonstrated in animal studies that, in animals heterozygous for pericentric chromosomal inversions, loop formation is greatly reduced during meiosis. This results in absence of recombination within the inverted segment, with recombination seen only outside the inversion. A recent study in yeast has shown that telomeres, rather than centromeres, lead in chromosome movement just prior to meiosis and may be involved in promoting recombination. We studied by cytogenetic analysis and DNA polymorphisms the nature of meiotic recombination in a three-generation family with a large pericentric X chromosome inversion, inv(X)(p21.1q26), in which Duchenne muscular dystrophy (DMD) was cosegregating with the inversion. On DNA analysis there was no evidence of meiotic recombination between the inverted and normal X chromosomes in the inverted segment. Recombination was seen at the telomeric regions, Xp22 and Xq27-28. No deletion or point mutation was found on analysis of the DMD gene. On the basis of the FISH results, we believe that the X inversion is the mutation responsible for DMD in this family. Our results indicate that (1) pericentric X chromosome inversions result in reduction of recombination between the normal and inverted X chromosomes; (2) meiotic X chromosome pairing in these individuals is likely initiated at the telomeres; and (3) in this family DMD is caused by the pericentric inversion.  相似文献   

11.
Summary The case of a newborn girl with Zellweger syndrome and a pericentric inversion of chromosome 7, 46,XX, inv(7)(p12q11.23), is reported. The diagnosis was confirmed by marked deficiency of peroxisomal beta-oxidation enzymes in hepatic cells from autopsy samples. This is the second case of Zellweger syndrome associated with a rearrangement of chromosome 7, the tentative gene assignment to 7q11 being further supported; the gene is probably confiend to 7q11.23.  相似文献   

12.
Investigation of the origins of human autosomal inversions   总被引:1,自引:1,他引:0  
A significant proportion of both pericentric and paracentric inversions have recurrent breakpoints and so could either have arisen through multiple independent events or be identical by descent (IBD) with a single common ancestor. Of two common variant inversions previously studied, the inv(2)(p11q13) was genuinely recurrent while the inv(10)(p11.2q21.2) was IBD in all cases tested. Excluding these two variants we have ascertained 257 autosomal inversion probands at the Wessex Regional Genetics Laboratory. There were 104 apparently recurrent inversions, representing 35 different breakpoint combinations and we speculated that at least some of these had arisen on more than one occasion. However, haplotype analysis identified no recurrent cases among eight inversions tested, including the variant inv(5)(p13q13). The cases not IBD were shown to have different breakpoints at the molecular cytogenetic level. No crossing over was detected within any of the inversions and the founder haplotypes extended for variable distances beyond the inversion breakpoints. Defining breakpoint intervals by FISH mapping identified no obvious predisposing elements in the DNA sequence. In summary the vast majority of human inversions arise as unique events. Even apparently recurrent inversions, with the exception of the inv(2)(p12q13), are likely to be either derived from a common ancestor or to have subtly different breakpoints. Presumably the lack of selection against most inversions allows them to accumulate and disperse amongst different populations over time. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Chromosomal changes through pericentric inversions play an important role in the origin of species. Certain pericentric inversions are too minute to be detected cytogenetically, thus hindering the complete reconstruction of hominoid phylogeny. The advent of the fluorescence in situ hybridization (FISH) technique has facilitated the identification of many chromosomal segments, even at the single gene level. Therefore the cosmid probe for Prader-Willi (PWS)/Angelman syndrome to the loci on human chromosome 15 [ql 1-12] is being used as a marker to highlight the complementary sequence in higher primates. We hybridized metaphase chromosomes of chimpanzee (PTR), gorilla (GGO), and orangutan (PPY) with this probe (Oncor) to characterize the chromosomal segments because the nature of these pericentric inversions remains relatively unknown. Our observations suggest that a pericentric inversion has occurred in chimpanzee chromosome (PTR 16) which corresponds to human chromosome 15 at PTR 16 band pl 112, while in gorilla (GGO 15) and orangutan (PPY 16) the bands q11-12 complemented to human chromosome 15 band q11-12. This approach has proven to be a better avenue to characterize the pericentric inversions which have apparently occurred during human evolution. Genetic divergence in the speciation process which occurs through chromosomal rearrangement needs to be reevaluated and further explored using newer techniques.Correspondence to: R.S. Verma  相似文献   

14.
Summary A pericentric inversion of chromosome 12 has been followed in three large independently ascertained Danish families. Out of a total number of 52 persons examined, 25 were found to carry the inversion. The break-points in all three families were localized to p13 and q13, resulting in more than one-third of the total length of the chromosomes being inverted. However, no chromosomal aberrations arising because of meiotic crossing-over inside the inverted area have been found among the offspring of the carriers. The percentage of spontaneous abortions among carriers is found to be high, viz. 33%. The segregation rate is calculated to be 0.58, which is not significantly different from an expected segregation rate of 0.5. In family 3, an additional inversion of a chromosome 9 has been found in 4 individuals. Our results are discussed in relation to previous findings and with respect to the genetic counselling of families with pericentric inversions.  相似文献   

15.
J. A. Coyne  S. Aulard    A. Berry 《Genetics》1991,129(3):791-802
In(2LR)PL is a large pericentric inversion polymorphic in populations of Drosophila melanogaster on two Indian Ocean islands. This polymorphism is puzzling: because crossing over in female heterokaryotypes produces inviable zygotes, such inversions are thought to be underdominant and should be quickly eliminated from populations. The observed fixation for such inversions among related species has led to the idea that genetic drift can cause chromosome evolution in opposition to natural selection. We found, however, that In(2LR)PL is not underdominant for fertility, as heterokaryotypic females produce perfectly viable eggs. Genetic analysis shows that the lack of underdominance results from the nearly complete absence of crossing over in the inverted region. This phenomenon is probably caused by mechanical and not genetic factors, because crossing over is not suppressed in In(2LR)PL homokaryotypes. Our observations do not support the idea that the fixation of pericentric inversions among closely related species implies the action of genetic drift overcoming strong natural selection in very small populations. If chromosome arrangements vary in their underdominance, it is those with the least disadvantage as heterozygotes, like In(2LR)PL, that will be polymorphic or fixed in natural populations.  相似文献   

16.
Chromosomal polymorphism resulting from three autosomal pericentric inversions and a complex rearrangement involving the largest chromosome of the complement (pair 1) in Akodon arviculoides (2n= 14, 15) is reported. G- and C-banding patterns in somatic and meiotic cells allowed the precise identification of all chromosomes and rearrangements. In meiosis of male specimens with 2n = 15, a large trivalent reflecting the complex rearrangement in autosomal pair 1 was observed. Two possible explanations for it are discussed. G- and C-bands in diplotene cells in heterozygotes for the inversions showed different configurations depending on the pairing in the inverted segments. Chiasma frequency data fro three specimens are analyzed.  相似文献   

17.
We report on two unrelated cases of pericentric inversion 46,XY,inv(7)(p11q21.1) associated with distinct pattern of malformation including mental retardation, development delay, ectrodactyly, facial dismorphism, high arched palate. Additionally, one case was found to be characterized by mesodermal dysplasia. Cytogenetic analysis of the families indicated that one case was a paternally inherited inversion whereas another case was a maternally inherited one. Molecular cytogenetic studies have shown paternal inversion to have a breakpoint within centromeric heterochromatin being the cause of alphoid DNA loss. Maternal inversion was also associated with a breakpoint within centromeric heterochromatin as well as inverted euchromatic chromosome region flanked by two disrupted alphoid DNA blocks. Basing on molecular cytogenetic data we hypothesize the differences of clinical manifestations to be produced by a position effect due to localization of breakpoints within variable centromeric heterochromatin and, alternatively, due to differences in the location breakpoints, disrupteding different genes within region 7q21-q22. Our results reconfirm previous linkage analyses suggested 7q21-q22 as a locus of ectrodactily and propose inv (7)(p11q21.1) as a cause of recognizable pattern of malformations or a new chromosomal syndrome.  相似文献   

18.
Summary Two cases of pericentric inversion of chromosome 12 are presented, one 46,XX,inv(12)(p13;q11) and the other 47,XX,+21,inv(12)(p13;q13). In both cases one of the parents was also a heterozygotic carrier of the inversion. These inversions were detected among 4035 cytogenetic analyses carried out in patients with psychosomatic retardation and/or malformations (357 with a Down phenotype) and in patients with histories of miscarriages, sterility, or growth failure.In cases studied from a review of the literature together with our own we found that among 3235 cases of Down syndrome there were 7 patients with trisomy 21 and inherited balanced reciprocal translocation involving chromosomes other than pair 21. The frequent participation of some chromosomes in these balanced reciprocal translocations, above all those of group A (1–3), suggests that these and probably other rearrangements could make the segregation of chromosome 21 easier.  相似文献   

19.
Summary A mentally retarded male was found to be homozygous for a paracentric inversion of the long arm of chromosome 12(inv(12)(q21.1q23.2)). His parents, who are first cousins, and his phenotypically normal younger brother are inversion heterozygotes. Homozygous structural rearrangements are discussed and cases of paracentric inversions, including a further nine previously unpublished, are reviewed.  相似文献   

20.
Summary a 73/4-year-old girl with short stature was found to have a recombinant (X), dup q chromosome resulting from an apparently unique pericentric inversion (X)(p11.2q26) present in her mother and maternal grandmother. The recombinant X chromosome was shown to be late replicating and the inversion X chromosome to be randomly inactivated. This appears to be only the eighth report (7 female, 1 male) of a recombinant resulting from an X pericentric inversion despite all diagnosed females having mild clinical abnormalities. Reasons for the rarity of such recombinant X chromosomes in man are examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号