首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quaternary amine, Aliquat 336, inhibits the growth of the green alga Chlorella emersonii, 14C-fixation of the alga is also inhibited. The effect and the site of action of the compound was studied by using isolated spinach chloroplasts. The carbon dioxide dependent oxygen evolution of the chloroplasts is inhibited directly upon the addition of the amine and the oxygen evolution is replaced by an oxygen uptake. By investigating some electron transport reactions in the chloroplasts we were able to show that Aliquat 336 affects the electron transport on the level of photophosphorylation. The results from the in vivo and the in vitro experiments thus show that the quaternary amine affects the photosynthetic process. Aliquat 336 is a solvent extractant used in several industrial processes for extraction of metals from aqueous solutions. Aliquat 336 could be considered a presumptive water pollutant as the compound could enter a recipient water body and thus affect photosynthesis.  相似文献   

2.
The reactive extraction of succinic acid was carried out by mixed tertiary amine which consisted of tripropylamine (TPA) and trioctylamine (TOA) as the extraction agent in 1-octanol/n-heptane diluent. Maximum distribution coefficient was obtained at 8:2 weight ratio of TPA/TOA. At this ratio, its extraction efficiency is above 90% at the 3.9 wt.% of succinic acid in aqueous solution. Furthermore, the prevention of the third phase formation made the phase separation between organic phase and aqueous phase easy.  相似文献   

3.
The separation of lactic acid from complex fermentation broth was examined. Liquid–liquid extraction using reversible chemical complexation for reactive extraction was chosen to be the separation method. Over 50% yield of lactic acid was obtained from fermented broth in a single extraction step, when using the tertiary amine as the extractant, 1-dekanol as the diluent and trimethylamine (TMA) as the stripping solution. The effect of complex media on the extraction behaviour has hardly been examined previously.  相似文献   

4.
Kraft lignin (KL) is a renewable source of many valuable intermediate biochemical products currently derived from petroleum. An excessive of lignin comes from pulping wastewater caused an adverse pollution problems hence affecting human and aquatic life. A comprehensive study pertaining to emulsion liquid membrane (ELM) extraction of lignin from pulping wastewater was presented. ELM formulation contains Aliquat 336 as carrier, kerosene as diluent, sodium bicarbonate (NaHCO3) as stripping agent and Span 80 as surfactant. The emulsion stability was investigated at different surfactant concentrations, homogenizer speed and emulsification time. Modifier (2‐ethyl‐1‐hexanol) was added to avoid segregation of third phase while improving the emulsion stability. At optimum conditions, 95% and 56% of lignin were extracted and recovered, respectively at 10 min of extraction time, 0.007 M of Aliquat 336, 0.1 M of NaHCO3 and 1:5 of treat ratio. Additional of modifier was contributed to highest recovery up to 98%. The ELM process was found to be equally feasible and quite effective in the recovery of KL from real pulping wastewater. Therefore, ELM process provides a promising alternative technology to recover KL from pulping wastewater while solving the environmental problems simultaneously. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1305–1314, 2015  相似文献   

5.
The purification of industrial alpha-amylase by liquid-liquid extraction with Aliquat 336 reversed micellar solution as the extractant was studied. Seven kinds of Aliquat 336 reversed micellar solution, formed by using seven kinds of straight chain alkyl alcohols as cosolvent, have been utilized to extract industrial a-amylase. It was found that these seven kinds of reversed micellar solution can all achieve a high protein transfer efficiency in the forward extraction process. After a full forward and backward extraction cycle, however, only the reversed micelles with n-butanol as the cosolvent was found to be able to maintain the activity of alpha-amylase in the stripping solution. By using the reversed micelles of Aliquat 336/isooctane/1% (v/v) n-butanol to perform a full extraction cycle, it was found that 85% of the total activity of alpha-amylase in the industrial a-amylase could be recovered at the end of an extraction cycle and the specific activity of alpha-amylase could be concentrated about 1.5-fold; meanwhile, most of the neutral protease in the industrial a-amylase could be removed. The separation factor of alpha-amylase to neutral protease at the end of an extraction cycle can reach about 10. (c) 1995 John Wiley & Sons, Inc.  相似文献   

6.
The potential of recovering propionic acid from discharged water in vitamin B12 production by anaerobic fermentation was investigated in this paper. A primary amine, N1923, was used as the extractant, kerosene as diluter and n-octanol as modifier. The influences of the content of N1923 in the organic phase, the phase ratio and the pH of aqueous phase on the extraction yield of propionic acid were studied. The organic phase composition with the volume ratio was proposed of N1923:kerosene:n-octanol as 45:35:20. Under conditions of the phase ratio (o/w) as 1:4, the pH of aqueous phase of 3.0 and after 5 min extraction, the extraction yield of propionic acid can be over 97%.  相似文献   

7.
Lactic acid has extensive uses in the food, pharmaceutical, cosmetic and chemical industry. Lately, its use in producing biodegradable polymeric materials (polylactate) makes the production of lactic acid from fermentation broths very important. The major part of the production cost accounts for the cost of separation from very dilute reaction media where productivity is low as a result of the inhibitory nature of lactic acid. The current method of extraction/separation is both expensive and unsustainable. Therefore, there is great scope for development of alternative technology that will offer efficiency, economic, and environmental benefits. One of the promising technologies for recovery of lactic acid from fermentation broth is reactive liquid-liquid extraction. In this paper the extraction and recovery of lactic acid based on reactive processes is examined and the performance of a hydrophobic microporous hollow-fiber membrane module (HFMM) is evaluated. First, equilibrium experiments were conducted using organic solutions consisting of Aliquat 336/trioctylamine (as a carrier) and tri-butyl phosphate (TBP)/sunflower oil (as a solvent) The values of the distribution coefficient were obtained as a function of feed pH, composition of the organic phase (ratio of carrier to solvent), and temperature (range 8-40 degrees C). The optimum extraction was obtained with the organic phase consisting of a mixture of 15 wt % tri-octylamine (TOA) and 15% Aliquat 336 and 70% solvent. The organic phase with TBP performed best but is less suitable because of its damaging properties (toxicity and environmental impact) and cost. Sunflower oil, which performed moderately, can be regarded as a better option as it has many desirable characteristics (nontoxic, environment- and operator-friendly) and it costs much less. The percentage extraction was approximately 33% at pH 6 and at room temperature (can be enhanced by operating at higher temperatures) at a feed flow rate of 15-20 L/h. These results suggest that the hollow-fiber membrane process yields good percentage extraction at the fermentation conditions and its in situ application could improve the process productivity by suppressing the inhibitory effect of lactic acid.  相似文献   

8.
Lactic acid is an important commercial product and extracting it out of aqueous solution is a growing requirement in fermentation based industries and recovery from waste streams. The design of an amine extraction process requires (i) equilibrium and (ii) kinetic data for the acid-amine (solvent) system used. Equilibria for lactic acid extraction by alamine 336 in methyl-iso-butyl-ketone (MIBK) as a diluent have been determined. The extent to which the organic phase (amine +MIBK) may be loaded with lactic acid is expressed as a loading ratio, z=[HL](o)/[B](i,o). Calculations based on the stoichiometry of the reactive extraction and the equilibria involved indicated that more lactic acid is transferred to the organic phase than would be expected from the (1:1) stoichiometry of the reaction. The extraction equilibrium was interpreted as a result of consecutive formation of two acid-amine species with stoichiometries of 1:1 and 2:1. Equilibrium complexation constant for (1:1) and (2:1) has been estimated. Kinetics of extraction of lactic acid by alamine 336 in MIBK has also been determined. In a first study of its kind, the theory of extraction accompanied by a chemical reaction has been used to obtain the kinetics of extraction of lactic acid by alamine 336 in MIBK. The reaction between lactic acid and alamine 336 in MIBK in a stirred cell falls in Regime 3, extraction accompanied by a fast chemical reaction occurring in the diffusion film. The reaction has been found to be zero order in alamine 336 and first order in lactic acid with a rate constant of 1.38 s(-1). These data will be useful in the design of extraction processes.  相似文献   

9.
We introduce a reactive extraction to detoxify hydrolysate before fermentation to biofuels. In the selection of diluents, n-octanol showed the highest removal yield of 5-hydroxymethylfurfural (5-HMF) and levulinic acid. The removal yields of inhibitors were normalized to 30-min reactions. In treatments with pure extractant or diluents, only 2 ~ 4.1% of the formic acid was removed. Tri-n-octylamine (extractant) removed levulinic acid and acetic acid more efficiently, and furfural was removed more efficiently than formic acid or 5-HMF. n-Octanol (polar diluent) removed levulinic acid and acetic acid, furfural, and 5-HMF at 21.2, 33.7, and 65.7%, respectively. In contrast, kerosene (inert diluent) only removed the furfural by 27.6%. Based on these results, the optimum reactiveextraction system comprised tri-n-octylamine as the extractant, n-octanol as the polar diluent, and kerosene as the inert diluent. The optimal proportion of complex extractant was 20% trialkylamine, 70% n-octanol, and 10% kerosene. By detoxification, 63.9% of acetic acid and levulinic acid, 24.4% of 5-HMF, 63.9% of formic acid, and 64.0% of furfural could be removed.  相似文献   

10.
In order to extract or remove organic acids from kiwifruit juice, we evaluated their separation and transport rates through supported liquid membranes (SLMs). The liquid membrane consisted of an organic solution composed of a carrier (Aliquat 336/Alamine 336) and a linear alcohol (oleyl alcohol) and was loaded on a microporous polypropylene support (commercial grade Celgard 2500/2400). These SLMs were evaluated (i) in a batch cell to determine the permeability and (ii) in a continuous spiral membrane module to study the effects of various process parameters – flow of feed and strip solutions, membrane composition, recycling mode of operation and kiwifruit juice at natural pH. It was observed that there exists an optimum for each system: pH?2.5–?3.0 for Alamine 336/oleyl alcohol and pH?4.5 for Aliquat 336/oleyl alcohol. At this pH?the flux rates of citric acid and malic acid was greater (6–8 times) than that of quinic acid. The flux rates decreased (greatly for citric acid) with the flow rate of feed and strip solutions and increased (considerably for citric acid) with the SLM composition . The recycling of feed and strip solutions significantly improved the removal efficiency. The SLM system retained its performance over a period of a few days. The SLM process allowed extraction of the above three organic acids (ascorbic acid was removed in trace amounts) from kiwifruit juice at a rate of a few percent (5%) in a single-pass processing.  相似文献   

11.
The use of extraction techniques to alleviate product inhibition in bioprocesses is one of a number of potential separation methods. However, the intimate contact of an organic phase with the broth implies that the organic components of this phase may be present in the aqueous phase at saturation levels. The quaternary amine Aliquat 336 (trioctyl/decylmethylammonium entity), dissolved in octan-1-ol showed no inhibition on the growth of Pseudomonas putida, at least with respect to molecular toxicity. Nevertheless, it is important to point out two main effects of Aliquat 336 associated with its ion exchange properties. It is able (1) to complex hydroxyl ions and therefore drastically lower the pH of the broth and (2) release its counter ion through these exchanges. Therefore, a strict control of the pH of the cultivation must be conducted, with the constraint that Ps. putida has an optimal pH growth of 7.4-7.5. The pH range tolerated by this strain is, however, between 5.0 and 9.0. In addition, the counter ion of Aliquat 336 needs to be carefully chosen and HSO4- should be preferred to Cl-.  相似文献   

12.
The aim of this investigation was to separate pyruvic acid of biotransformation solutions from lactic acid through complex extraction. For this purpose, complex extraction was investigated from model solutions. Tri-n-octanylamine (TOA) was used as the extractant. The effects of various diluents, the stoichiometry of pyruvic acid to TOA, and the initial pH of the aqueous phase on the extraction process were investigated in this study. The effects of sodium hydroxide (NaOH) and trimethylamine (TMA) on the back extraction process were also studied, respectively. The optimal conditions attained from the model solutions proved efficient on the biotransformation solutions of different concentrations. A total recovery of 71–82% of pyruvic acid was obtained, whereas 89–92% of lactic acid was removed. The purity of pyruvic acid reached 97% after the removal of TMA by a simple distillation.  相似文献   

13.
The occurrence of significant co-extraction of buffer anions by the ion exchanger Aliquat 336 is unavoidable when high levels of system buffering is required. The co-extraction will result in inaccurate equilibrium and mass-transfer characterization of such a system unless its occurrence is taken into account, making process design and control difficult. A study of the equilibrium of phenylalanine extraction using Aliquat 336, a system where high levels of hydroxyl co-extraction occurs, was used as a model case to develop a method of accounting for co-extraction in mass-transfer modeling. Analysis of the equilibrium between bulk-aqueous-phase chloride and phenylalanine concentrations during mass transfer in a stirred-transfer cell showed there to be linear equilibrium relationships between the two parameters for a given extraction system of the form C(Cl,t) = alpha(C(A,t) - C(A,0)) for forward extraction and C(Cl,t) = epsilon C(A,t) + C(Cl,0) for backward extraction. The constants of proportionality of these relationships, or the "co-extraction constants," alpha and epsilon, were shown to be related to the selectivity of Aliquat 336 for the phenylalanine anion by the relationships alpha = -(1/S + 1) and epsilon; = -(1/S(-1) + 1). The linear equilibrium relationships were used to develop two-film theory mass-transfer models for both forward and backward extraction that account for co-extraction. These showed much higher accuracy in modeling stirred-transfer-cell data than the equivalent models which ignored co-extraction.  相似文献   

14.
Lactic acid extraction was carried out with trioctyl amine (TOA) in three diluents. The effect of initial lactic acid concentrations on the extraction efficiency was investigated. It was observed that although the percentage extraction remained constant or decreased but the loading ratio was increased in all the cases. The overloading was observed in the case of TOA in methyl isobutyl ketone (MIBK). The extraction of lactic acid was favored at a lower aqueous pH?in all the diluents. The improvement of the extraction efficiency at a higher aqueous pH?(=?6) was achieved by using the modified TOA (treated with HCl) in MIBK. However, the recovery of lactic was very poor in the case of modified TOA in MIBK, although the complete recovery was obtained for untreated TOA.  相似文献   

15.
The potential of boronic acids to improve the bioavailability of carbohydrate derived drugs was investigated through the study of the transport of four sialic acid derivatives through a lipophilic supported liquid membrane at departure phase pH's of 7.4, 8.5 and 10.0. It was found that facilitated transport did occur in most cases, but interestingly, and in contrast to that observed with monosaccharides such as d-fructose, the lipophilic ammonium salt, Aliquat 336, promoted fluxes than those of the boronic acid. The triol side chain of the sialic acid derivatives, combined with the amide at C5, appears to represent a previously unrecognised chloride binding domain which promotes extraction of these compounds into membranes containing Aliquat 336, leading to fluxes greater than those produced by boronic acids.  相似文献   

16.
The mixture of tripropylamine (TPA) and trioctylamine (TOA) dissolved in 1-octanol/n-heptane was used in the reactive extraction of (L+)lactic acid in aqueous solution. Maximum distribution coefficients were obtained in the range from 6:4 to 8:2 weight ratio of TPA/TOA at 5% (w/w) lactic acid in aqueous phase and their extraction efficiencies were above 90%. By introducing TPA into TOA, the third phase formation could be overcome, thereby, the settling time is shorter than in the case of TOA only.  相似文献   

17.
A carrier-mediated counter transport process is proposed to separate and to purify an amino acid produced by microbial fermentation. The case of L-valine permeation through a liquid membrane, constituted by a solution of Aliquat 336 in decanol and supported by a hydrophobic microporous membrane, is reported. A mathematical model was developed to estimate distribution coefficients and permeabilities and to predict the influence of hydrodynamic and pH conditions on supported liquid membrane (SLM) performances. Optimum conditions for the transport and the concentration of valine were achieved with synthetic aqueous valine solutions. Series of experiments on fermentation broths, where molasses and biomass contents were varied, permitted pointing out the role of the broth composition on the kinetics and yields of separation. The selectivity of transport of valine by an Aliquat 336/decanol liquid membrane was about 10 toward molasses dyes, 100 toward glucose, and beyond 1000 toward sucrose. This allowed us to achieve the recovery and one step of purification of the product in a single operation. The stability of the Aliquat 336/decanol liquid membrane was sufficient to ensure a selective transport of valine during a continuous run lasting 18 days.  相似文献   

18.
This paper describes a rapid method to identify the best solvent and carrier compound combinations with the highest extraction capability and the lowest microbial toxicity characteristics for product recovery from microbial fermentation. The extraction system has an aqueous phase, and an emulsion phase, which was a blend of sodium carbonate and organic phase [91% (v/v) organic solvent, 5% (v/v or wt/v) carrier compound, and 4% (v/v) surfactant Span 80]. Alamine 336, or tri-n-octylamine in n-heptane; Alamine 336, Alamine 304, or tributyl phosphate in hexane; and Alamine 304 or tributyl phosphate in iso-octane; Alamine 304 or Amberlite in xylene demonstrated high lactic acid extraction. For determination of bacterial toxicity of selected solvent and carrier compounds, Lactobacillus casei subsp. rhamnosus (ATCC 11443) was grown in LAF medium containing one of the selected organic solvent, carrier compound, and Span 80 in 250 ml flask at 37 °C and 125 rpm. Samples were collected regularly during 48 hour incubation, and measured for changes in cell density by absorbance at 620 nm, cell count using a fluorescent dye with flow cytometry, and lactic acid, and glucose concentrations by HPLC. Hexadecane:tributyl phosphate, n-dodecane:tri-n-octylamine, and kerosene:tri-n-octylphosphine oxide demonstrated the least microbial toxicity among the tested blends with excess solvent media. Whereas, hexanes:Alamine 304 and xylenes:Alamine 304 were nontoxic in solvent saturated media.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

19.
An efficient and fast extraction technique for the enrichment of valproic acid from human blood serum samples using the headspace liquid phase microextraction (HS-LPME) combined with gas chromatography (GC) analysis has been developed. The extraction was conducted by suspending a 2 microL drop of organic solvent in a 1 mL serum sample; following 20 min of extraction, withdrawing organic solvent into a syringe and injection into a GC with a flame ionization detector (FID), without any further pre-treatment. Four organic solvents, 1-decanole, benzyl alcohol, 1-octanol and n-dodecane, were studied as extractants, and n-dodecane was found to be the most sensitive solvent for valproic acid. The results revealed that HS-LPME is suitable for the successful extraction of valproic acid from human blood serum samples. Parameters like extraction time, ionic strength, pH, organic solvent volume, and temperature of the sample were studied and optimized to obtain the best extraction results. An enrichment factor of 27-fold was achieved in 20 min. The procedure resulted in a relative standard deviation of <13.2% (n=7) and a linear calibration range from 2 to 20 microg mL(-1) (r>0.98), and the limit of detection was 0.8 microg mL(-1) in serum blank samples. Overall, LPME proved to be a fast, sensitive and simple tool for the preconcentration of valproic acid from real samples. The proposed method was also applied to the analysis of valproate in pharmaceutical preparations.  相似文献   

20.
Reactive extraction of succinic acid from aqueous solutions with various tertiary amines dissolved in 1-octanol and n-heptane has been studied as a function of the acid concentration and the chain length of tertiary amine. When 1-octanol was used as diluent, the extractability of the tertiary amine was proportional to the chain length of tertiary amine at the same concentration of amines. The loading values were also proportional to the chain length of tertiary amine. However, when n-heptane was used as diluent, the extractability and loading values of the tertiary amine were inversely proportional to the chain length of amines. It was due to the aggregate formation of the acid-amine complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号