首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Li P  Wang Y  Qian Q  Fu Z  Wang M  Zeng D  Li B  Wang X  Li J 《Cell research》2007,17(5):402-410
Tiller angle of rice (Oryza sativa L.) is an important agronomic trait that contributes to grain production, and has long attracted attentions of breeders for achieving ideal plant architecture to improve grain yield. Although enormous efforts have been made over the past decades to study mutants with extremely spreading or compact tillers, the molecular mechanism underlying the control of tiller angle of cereal crops remains unknown. Here we report the cloning of the LAZY1 (LA1) gene that regulates shoot gravitropism by which the rice tiller angle is controlled. We show that LA1, a novel grass-specific gene, is temporally and spatially expressed, and plays a negative role in polar auxin transport (PAT). Loss-of-function of LA1 enhances PAT greatly and thus alters the endogenous IAA distribution in shoots, leading to the reduced gravitropism, and therefore the tiller-spreading phenotype of rice plants.  相似文献   

2.
Teosinte Branched 1 modulates tillering in rice plants   总被引:1,自引:0,他引:1  
Tillering is an important trait of cereal crops that optimizes plant architecture for maximum yield. Teosinte Branched 1 (TB1) is a negative regulator of lateral branching and an inducer of female inflorescence formation in Zea mays (maize). Recent studies indicate that TB1 homologs in Oryza sativa (rice), Sorghum bicolor and Arabidopsis thaliana act downstream of the auxin and MORE AUXILIARY GROWTH (MAX) pathways. However, the molecular mechanism by which rice produces tillers remains unknown. In this study, transgenic rice plants were produced that overexpress the maize TB1 (mTB1) or rice TB1 (OsTB1) genes and silence the OsTB1 gene through RNAi-mediated knockdown. Because lateral branching in rice is affected by the environmental conditions, the phenotypes of transgenic plants were observed in both the greenhouse and the paddy field. Compared to wild-type plants, the number of tillers and panicles was reduced and increased in overexpressed and RNAi-mediated knockdown OsTB1 rice plants, respectively, under both environmental conditions. However, the effect was small for plants grown in paddy fields. These results demonstrate that both mTB1 and OsTB1 moderately regulate the tiller development in rice.  相似文献   

3.
4.
Overexpression of the IAGLU gene from maize (ZmIAAGLU) in Arabidopsis thaliana, under the control of the CaMV 35S promoter, inhibited root but not hypocotyl growth of seedlings in four different transgenic lines. Although hypocotyl growth of seedlings and inflorescence growth of mature plants was not affected, the leaves of mature plants were smaller and more curled as compared to wild-type and empty vector transformed plants. The rosette diameter in transgenic lines with higher ZmIAGLU expression was also smaller compared to the wild type. Free indole-3-acetic acid (IAA) levels in the transgenic plants were comparable to the wild type, even though a decrease in free IAA levels might be expected from overexpression of an IAA-conjugate–forming enzyme. IAA-glucose levels, however, were increased in transgenic lines compared to the wild type, indicating that the ZmIAGLU gene product is active in these plants. In addition, three different 35SZmIAGLU lines showed less inhibition of root growth when cultivated on increasing concentrations of IAA but not indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D). Feeding IAA to transgenic lines resulted in increased IAA-glucose synthesis, whereas the levels of IAA-aspartate and IAA-glutamine formed were reduced compared to the wild type. Our results show that IAA homeostasis can be altered by heterologous overexpression of a conjugate-forming gene from maize.  相似文献   

5.

Background

Leucine-rich-repeat receptor-like kinases (LRR-RLKs) represent the largest subfamily of putative RLKs in plants. Although several members in this subfamily have been identified, the studies about the relationships between LRR-RLKs and root development are still few. We previously identified a novel LRR-RLK in rice roots, and named it OsRPK1.

Methods

In this study, we first detected OsRPK1 kinase activity in vitro, and assessed its expression profile. We then investigated its biological function using transgenic rice plants over- and under-expressing OsRPK1.

Results

The OsRPK1 gene, which encodes a Ca2 +-independent Ser/Thr kinase, was predominantly expressed in root tips, leaf blades, and undifferentiated suspension cells, and was markedly induced by treatment with auxin or ABA. Knockdown of OsRPK1 promoted the growth of transgenic rice plants, and increased plant height and tiller numbers. In contrast, over-expressing plants showed undeveloped adventitious roots, lateral roots, and a reduced root apical meristem. OsRPK1 over-expression also inhibited the expression of most auxin efflux carrier OsPIN genes, which was accompanied by changes in PAT and endogenous free IAA distribution in the leaves and roots.

Conclusions

The data indicated that OsRPK1, a novel leucine-rich-repeat receptor-like kinase, affects the root system architecture by negatively regulating polar auxin transport in rice.

General significance

This study demonstrated a common regulatory pathway of root system development in higher plants, which might be initiated by external stimuli via upstream receptor-like kinases and downstream carriers for polar auxin transport.  相似文献   

6.
Since auxin was first isolated and characterized as a plant hormone, the underlying molecular mechanism of auxin signaling has been elucidated primarily in dicot plants represented by Arabidopsis. In monocot plants, the molecular mechanism of auxin signaling has remained unclear, despite various physiological experiments. To understand the function and mechanism of auxin signaling in rice ( Oryza sativa ), we focused on the IAA gene, a well-studied gene in Arabidopsis that serves as a negative regulator of auxin signaling. We found 24 IAA gene family members in the rice genome. OsIAA3 is one of these family members whose expression is rapidly increased in response to auxin. We produced transgenic rice harboring m OsIAA3 - GR , which can overproduce mutant OsIAA3 protein containing an amino acid change in domain II to cause a gain-of-function phenotype, by treatment with dexamethasone. The transgenic rice was insensitive to auxin and gravitropic stimuli, and exhibited short leaf blades, reduced crown root formation, and abnormal leaf formation. These results suggest that , in rice, auxin is important for development and its signaling is mediated by IAA genes.  相似文献   

7.
生长素是最重要的植物激素之一,对植物生长发育起着关键调控作用。生长素作用于植物后,早期生长素响应基因家族Aux/IAA、GH3和SAUR等被迅速诱导,基因表达上调。其中Aux/IAA基因家族编码的蛋白一般由4个保守结构域组成,结构域Ⅰ具有抑制生长素信号下游基因表达的作用,结构域Ⅱ在生长素信号转导中主要被TIR1调控进而影响Aux/IAA的稳定性,结构域Ⅲ/Ⅳ通过与生长素响应因子ARF相互作用调控生长素信号。Aux/IAA基因家族在双子叶植物拟南芥(Arabidopsis thaliana)的器官发育、根形成、茎伸长和叶扩张等方面发挥重要作用;在单子叶植物水稻(Oryza sativa)和小麦(Triticum aestivum)中,主要影响根系发育和株型,但大多数Aux/IAA基因的功能尚不清楚。该文主要从Aux/IAA蛋白的结构、功能和生长素信号转导途径方面综述Aux/IAA家族在拟南芥、禾谷类作物及其它植物中的研究进展,以期为全面揭示Aux/IAA家族基因的生物学功能提供线索。  相似文献   

8.
Crop architecture parameters such as tiller number, angle and plant height are important agronomic traits that have been considered for breeding programmes. Auxin distribution within the plant has long been recognized to alter architecture. The rice (Oryza sativa L.) genome contains 12 putative PIN genes encoding auxin efflux transporters, including four PIN1 and one PIN2 genes. Here, we report that over-expression of OsPIN2 through a transgenic approach in rice (Japonica cv. Nipponbare) led to a shorter plant height, more tillers and a larger tiller angle when compared with wild type (WT). The expression patterns of the auxin reporter DR5::GUS and quantification of auxin distribution showed that OsPIN2 over-expression increased auxin transport from the shoot to the root-shoot junction, resulting in a non-tissue-specific accumulation of more free auxin at the root-shoot junction relative to WT. Over-expression of OsPIN2 enhanced auxin transport from shoots to roots, but did not alter the polar auxin pattern in the roots. Transgenic plants were less sensitive to N-1-naphthylphthalamic acid, an auxin transport inhibitor, than WT in their root growth. OsPIN2-over-expressing plants had suppressed the expression of a gravitropism-related gene OsLazy1 in the shoots, but unaltered expression of OsPIN1b and OsTAC1, which were reported as tiller angle controllers in rice. The data suggest that OsPIN2 has a distinct auxin-dependent regulation pathway together with OsPIN1b and OsTAC1 controlling rice shoot architecture. Altering OsPIN2 expression by genetic transformation can be directly used for modifying rice architecture.  相似文献   

9.
Reactive oxygen species and redox signaling undergo synergistic and antagonistic interactions with phytohormones to regulate protective responses of plants against biotic and abiotic stresses. However, molecular insight into the nature of this crosstalk remains scarce. We demonstrate that the hydrogen peroxide–responsive UDP-glucosyltransferase UGT74E2 of Arabidopsis thaliana is involved in the modulation of plant architecture and water stress response through its activity toward the auxin indole-3-butyric acid (IBA). Biochemical characterization of recombinant UGT74E2 demonstrated that it strongly favors IBA as a substrate. Assessment of indole-3-acetic acid (IAA), IBA, and their conjugates in transgenic plants ectopically expressing UGT74E2 indicated that the catalytic specificity was maintained in planta. In these transgenic plants, not only were IBA-Glc concentrations increased, but also free IBA levels were elevated and the conjugated IAA pattern was modified. This perturbed IBA and IAA homeostasis was associated with architectural changes, including increased shoot branching and altered rosette shape, and resulted in significantly improved survival during drought and salt stress treatments. Hence, our results reveal that IBA and IBA-Glc are important regulators of morphological and physiological stress adaptation mechanisms and provide molecular evidence for the interplay between hydrogen peroxide and auxin homeostasis through the action of an IBA UGT.  相似文献   

10.
We have previously observed that auxin can act as a repressor of the wound-inducible activation of a chimeric potato proteinase inhibitor II-CAT chimeric gene (pin2-CAT) in transgenic tobacco (Nicotiana tobacum) callus and in whole plants. Therefore, this study was designed to examine endogenous levels of indole-3-acetic acid (IAA) in plant tissues both before and after wounding. Endogenous IAA was measured in whole plant tissues by gas chromatography-mass spectrometry using an isotope dilution technique. 13C-Labeled IAA was used as an internal standard. The endogenous levels of IAA declined two- to threefold within 6 hours after a wound. The kinetics of auxin decline are consistent with the kinetics of activation of the pin2-CAT construction in the foliage of transgenic tobacco.  相似文献   

11.
12.
13.
14.
15.
16.
Plant architecture is determined by genetic and developmental programs as well as by environmental factors. Sessile plants have evolved a subtle adaptive mechanism that allows them to alter their growth and development during periods of stress. Phytohormones play a central role in this process; however, the molecules responsible for integrating growth- and stress-related signals are unknown. Here, we report a gain-of-function rice (Oryza sativa) mutant, tld1-D, characterized by (and named for) an increased number of tillers, enlarged leaf angles, and dwarfism. TLD1 is a rice GH3.13 gene that encodes indole-3-acetic acid (IAA)-amido synthetase, which is suppressed in aboveground tissues under normal conditions but which is dramatically induced by drought stress. The activation of TLD1 reduced the IAA maxima at the lamina joint, shoot base, and nodes, resulting in subsequent alterations in plant architecture and tissue patterning but enhancing drought tolerance. Accordingly, the decreased level of free IAA in tld1-D due to the conjugation of IAA with amino acids greatly facilitated the accumulation of late-embryogenesis abundant mRNA compared with the wild type. The direct regulation of such drought-inducible genes by changes in the concentration of IAA provides a model for changes in plant architecture via the process of drought adaptation, which occurs frequently in nature.Plant architecture is vitally important for rice (Oryza sativa), as it is closely related to yield potential. Plants with a desirable structural form are capable of increased grain production in resource-limited fields compared with plants with less desirable builds. The three fundamental determinants of rice architecture, tiller number, leaf/tiller angle, and plant height, which are also important agronomic traits, are largely under the control of genetic and developmental programs; however, they are also influenced by environmental factors.The effects of environmental conditions on plant architecture are derived from the fact that increased planting density inhibits the production of vegetative branches by grasses due to shade and nutrient deficiencies (Doust, 2007). In addition, sessile plants are frequently subjected to abiotic stresses, such as water deficiency, that can decrease the number of tillers and plant height.The genetic and environmental interactions involved in determining plant architecture are thought to be mediated by plant hormones. The fact that some of the genes cloned from morphologically defective mutants encode components involved in hormone biosynthesis, perception, and signaling suggests that the phytohormone orchestra plays a crucial role in the creation of plant architecture, and auxin appears to be the central player. As seen in the maintenance of apical dominance, basipetal polar auxin transport in the shoot suppresses axillary bud outgrowth at the shoot base, likely through interplay with other messengers, including cytokinin and strigolactone, a newly discovered branching hormone (for review, see McSteen, 2009).The establishment of an auxin gradient is prerequisite for its functions in plant morphogenesis, which include effects on root patterning, vascular tissue differentiation, axillary bud formation, flower organ development, and tropistic growth (Benková et al., 2003; Friml et al., 2003; Esmon et al., 2006). The auxin maxima in the plant body determine the location of primordia outgrowth, which involves the creation of distinct cell types that will give rise to various organs (Reinhardt et al., 2000; Grieneisen et al., 2007). Thus, the presence of stable local auxin maxima is a deciding factor in the ability of a plant to adopt an appropriate structural design. The asymmetric accumulation of auxin in certain cells results mainly from directional transport as well as from the dynamic biosynthesis, degradation, and conjugation of free indole-3-acetic acid (IAA), the main form of active auxin in plants (Woodward and Bartel, 2005; Paciorek and Friml, 2006). In rice, the perturbation of auxin homeostasis causes pleiotropic abnormalities leading to dramatic changes in plant architecture. For example, enhanced or reduced IAA biosynthesis via the overexpression or repression of OsYUCCA1 results in fluctuations in the level of IAA. These fluctuations produce severe abnormalities in shoot, root, and stem development, leading to dwarfism in transgenic rice plants (Yamamoto et al., 2007).The maintenance of IAA homeostasis through the conversion of free IAA to a conjugated form is a conserved mechanism in monocots and dicots. Several gene families have been identified that are involved in the conjugation of free IAA with sugars, amino acids, or methyl groups (Qin et al., 2005; Woodward and Bartel, 2005). Proteins belonging to the GH3 family are responsible for converting active IAA to its inactive form via the conjugation of IAA with amino acids (Staswick et al., 2005). GH3 was first identified in Glycine max as an early auxin-responsive gene (Hagen and Guilfoyle, 1985). GH3 functions in the negative feedback regulation of IAA concentration, in that excess IAA up-regulates GH3 expression, causing the IAA conjugated to amino acids to be either stored or degraded. It has been shown that members of this gene family in Arabidopsis (Arabidopsis thaliana) are also regulated by hormones and environmental factors, including salicylic acid (SA), abscisic acid (ABA), pathogen infection, and light (Takase et al., 2004; Park et al., 2007a, 2007b; Zhang et al., 2007). Therefore, in addition to functioning in growth and development under normal conditions, GH3 genes also participate in plant resistance to biotic and abiotic stress. Similarly, OsGH3.8 and OsGH3.1 in rice reportedly play dual roles in development and bacterial resistance through the regulation of auxin signaling (Ding et al., 2008; Domingo et al., 2009). However, no other OsGH3 members have been reported that function in abiotic stress adaptation in rice.Drought stress triggers the production of ABA and induces the expression of numerous genes via ABA-dependent and -independent pathways. Synchronized changes in plant architecture during drought-stress adaptation have been observed; however, no molecular mechanism has been reported. Here, we describe the cloning of OsGH3.13, a new member of the GH3 gene family, from a gain-of-function mutant, tld1-D (for increased number of tillers, enlarged leaf angles, and dwarfism). TLD1/OsGH3.13 is suppressed in aboveground tissues in rice under normal growth conditions in order to maintain a reasonable structural design; however, it is strongly induced in rice seedlings subjected to drought stress. The activation of TLD1/OsGH3.13 in tld1-D mutant rice results in IAA deficiency and dramatic changes in architecture; however, it also enhances drought tolerance. The loss-of-function mutant tld1 does not show visible differences from wild-type plants in normal growth and drought conditions. Here, we provide evidence that the down-regulation of IAA facilitates the accumulation of late-embryogenesis abundant (LEA) mRNA and switches the focus of rice plants from growth to stress adaptation at the expense of plant architecture and tissue patterning. Our results demonstrate the crucial role of IAA in integrating diverse developmental and environmental cues.  相似文献   

17.
18.
19.
20.
The phytohormone auxin plays critical roles in regulating myriads of plant growth and developmental processes. Microbe infection can disturb auxin signaling resulting in defects in these processes, but the underlying mechanisms are poorly understood. Auxin signaling begins with perception of auxin by a transient co-receptor complex consisting of an F-box transport inhibitor response 1/auxin signaling F-box (TIR1/AFB) protein and an auxin/indole-3-acetic acid (Aux/IAA) protein. Auxin binding to the co-receptor triggers ubiquitination and 26S proteasome degradation of the Aux/IAA proteins, leading to subsequent events, including expression of auxin-responsive genes. Here we report that Rice dwarf virus (RDV), a devastating pathogen of rice, causes disease symptoms including dwarfing, increased tiller number and short crown roots in infected rice as a result of reduced sensitivity to auxin signaling. The RDV capsid protein P2 binds OsIAA10, blocking the interaction between OsIAA10 and OsTIR1 and inhibiting 26S proteasome-mediated OsIAA10 degradation. Transgenic rice plants overexpressing wild-type or a dominant-negative (degradation-resistant) mutant of OsIAA10 phenocopy RDV symptoms are more susceptible to RDV infection; however, knockdown of OsIAA10 enhances the resistance of rice to RDV infection. Our findings reveal a previously unknown mechanism of viral protein reprogramming of a key step in auxin signaling initiation that enhances viral infection and pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号