首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
X Peng  Y Zhao  J Cao  W Zhang  H Jiang  X Li  Q Ma  S Zhu  B Cheng 《PloS one》2012,7(7):e40120

Background

CCCH-type zinc finger proteins comprise a large protein family. Increasing evidence suggests that members of this family are RNA-binding proteins with regulatory functions in mRNA processing. Compared with those in animals, functions of CCCH-type zinc finger proteins involved in plant growth and development are poorly understood.

Methodology/Principal Findings

Here, we performed a genome-wide survey of CCCH-type zinc finger genes in maize (Zea mays L.) by describing the gene structure, phylogenetic relationships and chromosomal location of each family member. Promoter sequences and expression profiles of putative stress-responsive members were also investigated. A total of 68 CCCH genes (ZmC3H1-68) were identified in maize and divided into seven groups by phylogenetic analysis. These 68 genes were found to be unevenly distributed on 10 chromosomes with 15 segmental duplication events, suggesting that segmental duplication played a major role in expansion of the maize CCCH family. The Ka/Ks ratios suggested that the duplicated genes of the CCCH family mainly experienced purifying selection with limited functional divergence after duplication events. Twelve maize CCCH genes grouped with other known stress-responsive genes from Arabidopsis were found to contain putative stress-responsive cis-elements in their promoter regions. Seven of these genes chosen for further quantitative real-time PCR analysis showed differential expression patterns among five representative maize tissues and over time in response to abscisic acid and drought treatments.

Conclusions

The results presented in this study provide basic information on maize CCCH proteins and form the foundation for future functional studies of these proteins, especially for those members of which may play important roles in response to abiotic stresses.  相似文献   

4.
应用SSH技术研究NaHCO3胁迫下柽柳基因的表达   总被引:14,自引:0,他引:14  
以NaHCO3胁迫紫杆柽柳(Tamarix androssowii)cDNA为试验方(tester),正常生长紫杆柽柳cDNA为驱动方(driver),应用SSH技术研究胁迫下柽柳基因的表达。经Northern杂交检测,共获得36个盐胁迫应答基因。Blastx分析表明,它们编码的蛋白与下列蛋白同源:抗氧化酶CAT和PRDX;海藻糖磷酸酶(trehalose phosphatase),该酶与海藻糖合成相关;多种调控蛋白,例如bZIP转录因子、MADS-box蛋白、富含甘氨酸RNA结合蛋白(glycine-rich RNA-binding proteins)、CCCH型锌指蛋白、F-box蛋白等等;早期光诱导蛋白(early light-induced protein),该蛋白可以保护和/或修复由胁迫引起的植物光合元件(photosynthetic apparatus)损伤;半胱氨酸蛋白酶(cysteine proteinase)和VPE(vacuolar processing enzyme),它们在植物细胞的死亡过程中起作用;以及脂质转移蛋白前体(lipid transfer protein precursor)、聚合泛素(polyubiquitin)、查尔酮合成酶、谷胱甘肽转移酶、NADPIDH、盐诱导S12蛋白、OEE1等蛋白。在获得的36个基因中,3个基因编码的蛋白分别与3个推定(putative)的蛋白即HAK2(K^ transporter)、钙结合蛋白和RNA结合蛋白具有同源性;同时,发现6个盐胁迫应答的新序列。上述结果提示柽柳的抗盐性可能不仅是依赖于盐腺的泌盐作用,而是一个多种抗盐途径和多基因协同作用的复杂体系。  相似文献   

5.
6.
7.
CCCH-type zinc-finger proteins constitute a large family playing key roles during plant development and growth. In the present study, we investigated the involvement of the CCCH-type zinc finger protein of AtZFP1 (At2g25900) in flowering and salt stress response in Arabidopsis. Compared with the wild type (WT), bolting and flowering were delayed in AtZFP1-overexpressing plants. Real-time PCR analysis of floral regulating genes in overexpressing Arabidopsis revealed that enhanced expression of FLC decreased the expressions of FT and SOC1. The Fv/Fm of overexpressing Arabidopsis lines was unchanged under salt stress. In contrast, ΦPSII activity and PSI oxidoreduction decreased in WT, overexpressing and mutant strains under salt stress conditions, with the smallest reduction in these parameters observed in the overexpressing strains. These results suggest that the CCCH zinc-finger protein AtZFP1 primarily controls flowering time by changing the expression of flowering genes under long-day conditions. The overexpression of this protein delayed flowering and increased the content and double-bond index of unsaturated fatty acids. Elevation of unsaturated fatty acid content might play important role in protecting the photosynthetic apparatus and maintaining the membrane function at salt stress by alleviating PSII and PSI photoinhibition.  相似文献   

8.
Redox homeostasis is important for plants to be able to maintain cellular metabolism, and disrupting cellular redox homeostasis will cause oxidative damage to cells and adversely affect plant growth. In this study, a cotton CCCH-type tandem zinc finger gene defined as GhTZF1, which was isolated from a cotton cell wall regeneration SSH library in our previous research, was characterized. GhTZF1 was predominantly expressed during early cell wall regeneration, and it was expressed in various vegetative and reproductive tissues. The expression of GhTZF1 was substantially up-regulated by a variety of abiotic stresses, such as PEG and salt. GhTZF1 also responds to methyl jasmonate (MeJA) and H2O2 treatment. Overexpression of GhTZF1 enhanced drought tolerance and delayed drought-induced leaf senescence in transgenic Arabidopsis. Subsequent experiments indicated that dark- and MeJA-induced leaf senescence was also attenuated in transgenic plants. The amount of H2O2 in transgenic plants was attenuated under both drought conditions and with MeJA-treatment. The activity of superoxide dismutase and peroxidase was higher in transgenic plants than in wild type plants under drought conditions. Quantitative real-time PCR analysis revealed that overexpression of GhTZF1 reduced the expression of oxidative-related senescence-associated genes (SAGs) under drought conditions. Overexpression of GhTZF1 also enhanced oxidative stress tolerance, which was determined by measuring the expression of a set of antioxidant genes and SAGs that were altered in transgenic plants during H2O2 treatment. Hence, we conclude that GhTZF1 may serve as a regulator in mediating drought stress tolerance and subsequent leaf senescence by modulating the reactive oxygen species homeostasis.  相似文献   

9.
10.
11.
Zinc finger genes comprise a large and diverse gene family. Based on their individual finger structures and spacing, zinc finger proteins are further divided into different families according to their specific molecular functions. Genes in the CCCH family encode zinc finger proteins containing a motif with three cysteines and one histidine. They play important roles in plant growth and development, and in response to biotic and abiotic stresses. However, the limited analysis of the genome sequence has meant that there is no detailed information concerning the CCCH zinc finger family in tomato (Solanum lycopersicum). Here, we identified 80 CCCH zinc finger protein genes in the tomato genome. A complete overview of this gene family in tomato was presented, including the chromosome locations, gene duplications, phylogeny, gene structures and protein motifs. Promoter sequences and expression profiles of putative stress-responsive members were also investigated. These results revealed that, with the exception of four genes, the 80 CCCH genes are distributed over all 12 chromosomes with different densities, and include six segmental duplication events. The CCCH family in tomato could be divided into 12 groups based on their different CCCH motifs and into eight subfamilies by phylogenetic analysis. Analysis showed that almost all CCCH genes contain putative stress-responsive cis-elements in their promoter regions. Nine CCCH genes chosen for further quantitative real-time PCR analysis showed differential expression patterns in three representative tomato tissues. In addition, their expression levels indicated that these genes are mostly involved in the response to mannitol, heat, salicylic acid, ethylene or methyl jasmonate treatments. To the best of our knowledge, this is the first report of a genome-wide analysis of the tomato CCCH zinc finger family. Our data provided valuable information on tomato CCCH proteins and form a foundation for future studies of these proteins, especially for those members that may play important roles in stress responses.  相似文献   

12.
13.
ZFP245 is a cold- and drought-responsive gene that encodes a zinc finger protein in rice. The ZFP245 protein localizes in the nucleus and exhibits trans-activation activity. Transgenic rice plants overexpressing ZFP245 were generated and found to display high tolerance to cold and drought stresses. The transgenic plants did not exhibit growth retardation, but showed growth sensitivity against exogenous abscisic acid, increased free proline levels and elevated expression of rice pyrroline-5-carboxylatesynthetase and proline transporter genes under stress conditions. Overproduction of ZFP245 enhanced the activities of reactive oxygen species-scavenging enzymes under stress conditions and increased the tolerance of rice seedlings to oxidative stress. Our data suggest that ZFP245 may contribute to the tolerance of rice plants to cold and drought stresses by regulating proline levels and reactive oxygen species-scavenging activities, and therefore may be useful for developing transgenic crops with enhanced tolerance to abiotic stress.  相似文献   

14.
15.
Stress-associated proteins (SAPs) are a novel class of zinc finger proteins that extensively participate in abiotic stress responses. To date, no overall analysis and expression profiling of SAP genes in woody plants have been reported. Populus euphratica is distributed in desert regions and is extraordinarily adaptable to abiotic stresses. Thus, it is regarded as a promising candidate for studying abiotic stress resistance mechanisms of woody plants. In this study, 18 non-redundant SAP genes were identified from the genome of P. euphratica using basic local alignment search tool algorithms and functional domain verification. Among these 18 PeuSAP genes, 15 were intronless. To investigate the evolutionary relationships of SAP genes in P. euphratica and other Salicaceae plants, phylogenetic analyses were performed. Subsequently, the expression profiles of the 18 PeuSAP genes were analyzed in different tissues and under various stresses (drought, salt, heat, cold, and abscisic acid (ABA) treatment) using quantitative real-time PCR. Tissue expression analysis indicated that PeuSAPs showed no tissue specificity. PeuSAPs were induced by multiple abiotic stresses, especially drought, salt, and heat stresses, perhaps because of abundant cis-acting heat shock elements and drought-inducible elements in the promoter regions of the PeuSAPs. Moreover, single nucleotide polymorphisms (SNPs) variant analysis revealed many synonymous and non-synonymous SNPs in PeuSAP genes, but the zinc finger structure was conserved during evolution. These results provide an overview of the SAP gene family in P. euphratica and a reference for further functional research on PeuSAP genes.  相似文献   

16.
17.
18.
Many TFIIIA‐type zinc finger proteins (ZFPs) play important roles in stress responses in plants. In the present study, a novel zinc finger protein gene, StZFP1, was cloned from potato. StZFP1 is a typical TFIIIA‐type two‐finger zinc finger gene with one B‐box domain, one L‐box domain and a DLN‐box/EAR motif. The StZFP1 genes belong to a small gene family with an estimated copy number of four or five, located on chromosome I. StZFP1 is constitutively expressed in leaves, stems, roots, tubers and flowers of adult plants. Expression of StZFP1 can be induced by salt, dehydration and exogenously applied ABA. StZFP1 expression is also responsive to infection by the late blight pathogen Phytophthora infestans. Transient expression analysis of StZFP1:GFP fusion protein revealed that StZFP1 is preferentially localised in the nucleus. Ectopic expression of StZFP1, driven by the Arabidopsis rd29A promoter in transgenic tobacco, increased plant tolerance to salt stress. These results demonstrate that StZFP1 might be involved in potato responses to salt and dehydration stresses through an ABA‐dependent pathway.  相似文献   

19.
20.
Zinc finger proteins were involved in response to different environmental stresses in plant species. A typical Cys2/His2-type (C2H2-type) zinc finger gene GmZF1 from soybean was isolated and was composed of 172 amino acids containing two conserved C2H2-type zinc finger domains. Phylogenetic analysis showed that GmZF1 was clustered on the same branch with six C2H2-type ZFPs from dicotyledonous plants excepting for GsZFP1, and distinguished those from monocotyledon species. The GmZF1 protein was localized at the nucleus, and has specific binding activity with EP1S core sequence, and nucleotide mutation in the core sequence of EPSPS promoter changed the binding ability between GmZF1 protein and core DNA element, implying that two amino acid residues, G and C boxed in core sequence TGACAGTGTCA possibly play positive regulation role in recognizing DNA-binding sites in GmZF1 proteins. High accumulation of GmZF1 mRNA induced by exogenous ABA suggested that GmZF1 was involved in an ABA-dependent signal transduction pathway. Over-expression of GmZF1 significantly improved the contents of proline and soluble sugar and decreased the MDA contents in the transgenic lines exposed to cold stress, indicating that transgenic Arabidopsis carrying GmZF1 gene have adaptive mechanisms to cold stress. Over-expression of GmZF1 also increased the expression of cold-regulated cor6.6 gene by probably recognizing protein-DNA binding sites, suggesting that GmZF1 from soybean could enhance the tolerance of Arabidopsis to cold stress by regulating expression of cold-regulation gene in the transgenic Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号