首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present experiments we interfered with the mechanism of acetylcholine (ACh) synthesis in the rat superior cervical ganglion by impairing the supply of either the choline group (hemicholinium no. 3 [HC-3]treatment) or the acetyl group (thiamine deprivation). Under both conditions stimulation causes in the ganglion a progressive decline in ACh output associated with a depletion of transmitter tissue content. ACh release from the terminals of a single preganglionic fiber was estimated from the quantum content value of the evoked excitatory postsynaptic potentials (EPSP's) recorded intracellularly in the ganglion neuron under test. The present observations indicate that Poisson statistics describe transmitter release at either low or high release levels. Furthermore, the progressive decline in the rate of ACh output occurring during repetitive stimulation is shown to correspond to a progressive decrease in the number of transmitter quanta released per impulse and not to any modification in the size of individual quanta. Some 8,000 transmitter quanta proved to represent the presynaptic transmitter store initially present in those terminals on a neuron that are activated by stimulation of a single preganglionic fiber. Speculations are considered about synaptic efficacy and nerve connections in rat autonomic ganglia. It is suggested that six preganglionic fibers represent the mean input to a ganglion neuron.  相似文献   

2.
Dunant Y  Israël M 《Biochimie》2000,82(4):289-302
The classical concept of the vesicular hypothesis for acetylcholine (ACh) release, one quantum resulting from exocytosis of one vesicle, is becoming more complicated than initially thought. 1) synaptic vesicles do contain ACh, but the cytoplasmic pool of ACh is the first to be used and renewed on stimulation. 2) The vesicles store not only ACh, but also ATP and Ca(2+) and they are critically involved in determining the local Ca(2+) microdomains which trigger and control release. 3) The number of exocytosis pits does increase in the membrane upon nerve stimulation, but in most cases exocytosis happens after the precise time of release, while it is a change affecting intramembrane particles which reflects more faithfully the release kinetics. 4) The SNARE proteins, which dock vesicles close to Ca(2+) channels, are essential for the excitation-release coupling, but quantal release persists when the SNAREs are inactivated or absent. 5) The quantum size is identical at the neuromuscular and nerve-electroplaque junctions, but the volume of a synaptic vesicle is eight times larger in electric organ; at this synapse there is enough ACh in a single vesicle to generate 15-25 large quanta, or 150-200 subquanta. These contradictions may be only apparent and can be resolved if one takes into account that an integral plasmalemmal protein can support the formation of ACh quanta. Such a protein has been isolated, characterised and called mediatophore. Mediatophore has been localised at the active zones of presynaptic nerve terminals. It is able to release ACh with the expected Ca(2+)-dependency and quantal character, as demonstrated using mediatophore-transfected cells and other reconstituted systems. Mediatophore is believed to work like a pore protein, the regulation of which is in turn likely to depend on the SNARE-vesicle docking apparatus.  相似文献   

3.
The present experiments tested whether preganglionic stimulation and direct depolarization of nerve terminals by tityustoxin could mobilize similar or different pools of acetylcholine (ACh) from the cat superior cervical ganglia in the presence of 2-(4-phenylpiperidino)cyclohexanol (vesamicol, AH5183), an inhibitor of ACh uptake into synaptic vesicles. In the absence of vesamicol, both nerve stimulation and tityustoxin increased ACh release. In the presence of vesamicol, the release of ACh induced by tityustoxin was inhibited, and just 16% of the initial tissue content could be released, a result similar to that obtained with electrical stimulation under the same condition. When the impulse-releasable pool of ACh had been depleted, tityustoxin still could release transmitter, amounting to some 10% of the ganglion's initial content. This pool of transmitter seemed to be preformed in the synaptic vesicles, rather than synthesized in response to stimuli, as tityustoxin could not release newly synthesized [3H]ACh formed in the presence of vesamicol, and hemicholinium-3 did not prevent the toxin-induced release. In contrast to the results with tityustoxin, preganglionic stimulation could not release transmitter when impulse-releasable or toxin-releasable compartments had been depleted. Our results confirm that vesamicol inhibits the mobilization of transmitter from a reserve to a more readily releasable pool, and they also suggest that, under these experimental conditions, there might be some futile transmitter mobilization, apparently to sites other than nerve terminal active zones.  相似文献   

4.
The present experiments measured the release of acetylcholine (ACh) by the cat superior cervical ganglia in the presence of, and after exposure to, 2-(4-phenylpiperidino)cyclohexanol (AH5183), a compound known to block the uptake of ACh by cholinergic synaptic vesicles. We confirmed that AH5183 blocks evoked ACh release during preganglionic nerve stimulation when approximately 13-14% of the initial ganglial ACh stores had been released; periods of rest in the presence of the drug did not promote recovery from the block, but ACh release recovered following the washout of AH5183. ACh was synthesized in AH5183-treated ganglia, as determined by the synthesis of [3H]ACh from [3H]choline, and this [3H]ACh could be released by stimulation following drug washout. The specific activity of the released ACh matched that of the tissue's ACh, and thus we conclude that ACh synthesized in the presence of AH5183 is a releasable as pre-existing ACh stores once the drug is removed. We tested the relative releasability of ACh synthesized during AH5183 exposure (perfusion with [3H]choline) and that synthesized during recovery from the drug's effects (perfusion with [14C]choline: the ratio of [3H]ACh to [14C]ACh released by stimulation was similar to the ratio in the tissue. These results suggest that the mobilization of ACh for release by ganglia during recovery from an AH5183-induced block is independent of the conditions under which the ACh was synthesized. Unlike nerve impulses, black widow spider venom (BWSV) induced the release of ACh from AH5183-blocked ganglia, even in the drug's continued presence. Venom-induced release of ACh from AH5183-treated ganglia was not less than the venom-induced release from tissues not exposed to AH5183. This effect of BWSV was attributed to the action of the protein, alpha-latrotoxin, because an anti-alpha-latrotoxin antiserum blocked the venom's action. ACh synthesized during AH5183 exposure was labelled from [3H]choline, and subsequent treatment with BWSV released [3H]ACh with the same temporal pattern as the release of total ACh. To exclude a nonexocytotic origin for the [3H]ACh released by BWSV, ganglia were preloaded with [3H]diethylhomocholine to form [3H]acetyldiethylhomocholine, an ACh analogue excluded from vesicles; the venom did not increase the rate of [3H]acetyldiethylhomocholine efflux. It is concluded that a vesicular ACh pool insensitive to the inhibitory action of AH5183 might exist and that this vesicular pool is not mobilized by electrical stimulation to exocytose in the presence of AH5183, but it is by BWSV.  相似文献   

5.
The findings was confirmed that there is a "rebound" increase of stored acetylcholine (ACh) in cat superior cervical ganglia conditioned by prolonged preganglionic stimulation at a frequency high enough to cause initial depletion of the store. Ganglia removed immediately after 60 min of continuous or interrupted stimulation at 50 Hz, with chloralose as anesthetic, contained about 30% more ACh than their unconditioned controls; the rebound rose to about 60% after 15 min of rest and then subsided with an apparent half-time of about 2 h. Tests with hemicholinium, combined with hexamethonium or tubocurarine, showed that rebound ACh was located presynaptically and could be released by nerve impulses; but conditioned ganglia perfused with an eserine-containing medium did not release more ACh than their unconditioned controls, except in circumstances in which the mobilization of ACh from a reserve store appeared to be the rate-limiting process for release. The appearance of rebound ACh during and after conditioning stimulation was suppressed by hexamethonium and by tubocurarine, neither of which has much effect on ACh turnover in ganglia excited at lower frequencies, but not only by atropine, noradrenaline, or phenoxybenzamine. The formation of rebound ACH is thus contingent on the postsynaptic nicotinic response to released ACh, and may represent an augmentation of the transmitter store in structures remote from the release sites.  相似文献   

6.
Abstract: These experiments investigate the release of transmitter from the perfused superior cervical ganglia of cats induced by ouabain in the absence or presence of 2-(4-phenylpiperidino)cyclohexanol (vesamicol), a blocker of acetylcholine (ACh) uptake. Ouabain, perfused through the ganglia, released ACh in a Ca2+-dependent way. Vesamicol caused some inhibition of the release of ACh by ouabain; however, under this condition, the Na+, K+-ATPase inhibitor released five times more transmitter than did preganglionic stimulation at 5 Hz. Also, when ganglia exposed to vesamicol were depleted of the impulse-releasable pool of ACh, subsequent perfusion with ouabain released ACh, and this included ACh newly synthesized in the presence of vesamicol; this phenomenon could be inhibited by the lack of Ca2+ and presence of EGTA, and was completely abolished by perfusion with a medium containing 18 mM Mg2+. To test whether the release of this vesamicol-insensitive Ca2+-dependent pool by ouabain is associated with a decrease in the number of synaptic vesicles, ganglia treated with the ATPase inhibitor after the depletion of the impulse-releasable pool of ACh were fixed for electron microscopy. In the presence of Ca2+, coincident with the release of the vesamicol-insensitive pool of ACh, nerve terminals were almost depleted of synaptic vesicles; ganglia treated similarly, but with medium containing 18 mM Mg2+ instead of Ca2+, were not depleted of synaptic vesicles. These results suggest that ouabain releases a vesamicol-insensitive pool of ACh from the sympathetic ganglion and also support the notion that this compartment is vesicular and its exocytosis depends on extracellular Ca2+. It is suggested that empty-vesicle recycling in the presence of vesamicol restricts mobilization of full vesicles to release sites.  相似文献   

7.
《Insect Biochemistry》1986,16(3):583-587
Acetylcholine (ACh) content was reduced by about 30 pmol or 20% of the initial ACh content in the cockroach sixth abdominal ganglion in response to prolonged (30 min) tetanic stimulation at 40 Hz of the cercal nerves in the presence of 10−3 M hemicholinium-3 (HC-3). The reduction in ACh content in ganglia occurred in the cytoplasmic rather than the vesicular ACh fraction. The latter showed instead a transient increase followed by a gradual decrease to the previous level. Similar changes in ACh in the fractions were produced also by the stimulation, although the ACh content in ganglia did not change in a calcium-free saline, but was reduced in the presence of 50 μM dantrolene or 1–5 mM cobalt chloride. Synaptic transmission at the cercal nerve-giant nerve fiber synapses rapidly decreased and was abolished within a few minutes during tetanic stimulation at 40 Hz, but recovered on reducing the frequency to 0.1 Hz. The decline in transmission was not affected by HC-3, but a significant delay was observed in the recovery following 30 min of tetanic stimulation in the presence of HC-3.These results may suggest that the depletion of ACh as a functional store occurs in the cytoplasmic ACh fraction, rather than in the vesicular one, after prolonged stimulation in the presence of HC-3. The latter fraction shows and increase in the uptake of cytoplasmic ACh that depend on the presence of intracellular calcium ions during stimulation.  相似文献   

8.
The rate of translocation of newly synthesized acetylcholine (ACh) from the presynaptic cytosol of Torpedo electric organ nerve terminals into synaptic vesicles and the extent to which ACh release from these neurons is mediated by a vesicular mechanism were investigated. For this purpose the compound 2(4-phenylpiperidino)cyclohexanol (AH5183), which inhibits the active transport of ACh into isolated cholinergic synaptic vesicles, was employed. Preincubation of purified Torpedo nerve terminals (synaptosomes) with AH5183 does not affect the intraterminal synthesis of [3H]ACh but results in a marked inhibition (85%) of its Ca2+-dependent K+-evoked release. By contrast, the evoked release of the endogenous nonlabeled ACh is not affected by this compound. When AH5183 is added during radiolabeling, it causes a progressively smaller inhibition of [3H]ACh release which is completely abolished if the drug is added after the preparation has been labeled. These findings suggest that most of the newly synthesized synaptosomal [3H]ACh (85%) is released by a vesicular mechanism and that some [3H]ACh (15%) may be released by a different process. The translocation of cytosolic [3H]ACh into the synaptic vesicles was monitored by determining the time course of the loss of susceptibility of [3H]ACh release to AH5183. It was found not to be coupled kinetically to [3H]ACh synthesis and to lag behind it. The nature of the intraterminal processes underlying this lag is discussed.  相似文献   

9.
The presence of 5 or 20 microM choline in the eserinized medium superfusing striatal slices enhanced the spontaneous release of acetylcholine (ACh) at both concentrations and, at 20 microM, the release of transmitter evoked by electrical field stimulation. Neither the electrical stimulation nor the addition of choline altered choline acetyltransferase activity. These results show that ACh release is dependent on the availability of extracellular choline. The rate of choline efflux was 7 times higher than the rate of ACh release, was not affected by stimulation, and was increased by 40% when hemicholinium-3 (HC-3), an inhibition of choline uptake, was present. The muscarinic antagonist atropine (1 microM) increased the evoked release of ACh into both the choline-free medium and that containing 20 microM choline. An adenosine receptor antagonist, 1,3-diethyl-8-phenyl xanthine (10 microM), failed to affect ACh release or the enhancement of release produced by atropine. In medium containing HC-3, stimulation of the slices elicited ACh release for the first 20 min of the 30 min stimulation period (15 Hz); thereafter, although stimulation was continued, the rate of release decreased to that associated with spontaneous release. Tissue ACh contents were not modified by the addition of choline or atropine to the medium, but were depressed by HC-3. Neither atropine nor HC-3 altered tissue choline content. The total amount of ACh + choline released during an experiment was 5-15 times higher than the decrease in tissue levels of these two compounds during the same period of time.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Abstract: The acetylcholine (ACh) content of sympathetic ganglia increases above its normal level following a period of preganglionic nerve stimulation. In the present experiments, this extra ACh that accumulates following activity was labeled radioactively from [3H]choline and its specific activity was compared with that of ACh subsequently released during preganglionic nerve stimulation. The specific activity of the released ACh was similar to that of the total tissue ACh, suggesting that the extra ACh mixes fully with endogenous stores. The present experiments also show that transmitter release during neuronal stimulation is necessary for the poststimulation increase in transmitter store. However, the increase was not evident when transmitter release was induced by K+. It is concluded that both transmitter release and impulse invasion of the nerve terminals are necessary for the adaptive phenomenon to manifest itself. The role of choline delivery and choline acetyltransferase activity in generating the poststimulation increase in transmitter store was tested. When choline transport activity measured as choline analogue (homocholine) accumulation increased, ACh synthesis was increased and when transport activity was not increased, neither was ACh synthesis. There was no poststimulation increase in measured choline acetyltransferase activity.  相似文献   

11.
Thiamine and Cholinergic Transmission in the Electric Organ of Torpedo   总被引:4,自引:4,他引:0  
The electric organ of Torpedo marmorata was found to contain as much as 120 +/- 24 nmol of thiamine per g of fresh tissue. The vitamin was distributed as nonesterified thiamine (32%), thiamine monophosphate (22%), thiamine diphosphate (8%), and an important proportion of thiamine triphosphate (38%). A high level of thiamine triphosphate was found in synaptosomes isolated from the electric organ. In contrast, the synaptic vesicles did not show any enrichment in thiamine, whereas they contained a marked peak of acetylcholine (ACh) and ATP. Thus thiamine seems to be very abundant in cholinergic nerve terminals; its localization is apparently extravesicular, either in the axoplasm or in association with plasma membrane. When calcium was reduced and magnesium increased in the external medium, the efficiency of transmission was diminished, owing to inhibition of ACh release; in a parallel manner the degree of thiamine phosphorylation was found to increase--this condition is known to modify the repartition of ACh between vesicular and extravesicular compartments. Electrical stimulation, which causes periodic variations of the level of ACh and ATP, also caused significant changes in thiamine esters. In addition, related changes of the vitamin and the transmitter were observed under other conditions, suggesting a functional link between the metabolism of thiamine and that of ACh in cholinergic nerve terminals.  相似文献   

12.
By using the shibire mutation to block endocytosis in a temperature-dependent fashion, we have manipulated the number of synaptic vesicles in a nerve terminal and have observed a remarkable proportionality of the number of quanta released to the size of the total vesicle pool. In the experiments described below we determine that approximately 0.3% of the vesicle pool is released per stimulus. The data suggest that the pool of readily releasable docked vesicles does not represent the saturation of a limiting number of release sites, but instead represents a subset of vesicles that is in equilibrium with the larger pool of vesicles. Before presenting this data and the significance of the finding for the regulation of neurotransmission, we will briefly review the use of Drosophila genetics as a tool for dissecting synaptic transmission.  相似文献   

13.
These experiments measured the release and the synthesis of acetylcholine (ACh) by cat sympathetic ganglia in the presence of 2-(4-phenylpiperidino) cyclohexanol (AH5183), an agent that blocks the uptake of ACh into synaptic vesicles. Evoked transmitter release during short periods of preganglionic nerve stimulation was not affected by AH5183, but release during prolonged stimulation was not maintained in the drug's presence, whereas it was in the drug's absence. The amount of ACh releasable by nerve impulses in the presence of AH5183 was 194 +/- 10 pmol, which represented 14 +/- 1% of the tissue ACh store. The effect of AH5183 on ACh release was not well antagonized by 4-aminopyridine (4-AP), and not associated with inhibition of stimulation-induced calcium accumulation by nerve terminals. It is concluded that AH5183 blocks ACh release indirectly, and that the proportion of stored ACh releasable in the compound's presence represents transmitter in synaptic vesicles available to the release mechanism. The synthesis of ACh during 30 min preganglionic stimulation in the presence of AH5183 was 2,448 +/- 51 pmol and in its absence it was 2,547 +/- 273 pmol. Thus, as the drug decreased ACh release it increased tissue content. The increase in tissue content of ACh in the presence of AH5183 was not evident in resting ganglia; it was evident in stimulated ganglia whether or not tissue cholinesterase was inhibited; it was increased by 4-AP and reduced by divalent cation changes expected to decrease calcium influx during nerve terminal depolarization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Synthesis and release of [3H]acetylcholine ([3H]ACh) were measured in synaptosomes from the guinea pig cerebral cortex after preloading with [3H]choline ([3H]Ch). We demonstrate here that inhibition of choline (Ch) efflux results in an increase in acetylcholine (ACh) synthesis and release. Our findings are as follows: (1) inhibition of [3H]Ch efflux by hemicholinium-3 (HC-3) (100 microM), increased the levels of both the released (116% of control) and the residing (115% of control) [3H]ACh. (2) The muscarinic agonist, McN-A-343 (100 microM), which was previously shown to inhibit Ch efflux, also increased the released (121% of control) and the residing (109% of control) [3H]ACh. (3) Omission of Na+ ions (which are required for Ch transport) from the incubation medium had similar effects to those observed with McN-A-343 and HC-3. These results suggest inverse relationships between Ch efflux on one hand, and ACh synthesis and release on the other hand. (4) Depolarization with 50 mM K+, or with the K+ channel blocker, 4-aminopyridine (100 microM), also increased the total level of [3H]ACh (113 and 107% of nondepolarized synaptosomes, respectively). However, whereas conditions that inhibit Ch transport such as HC-3, McN-A-343 and "no sodium" increased both the residing and the released [3H]ACh depolarization with high K+ or 4-aminopyridine reduced the residing (79 and 87% of control, respectively) and increased only the released [3H]ACh (182 and 148% of control, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Guinea-pig ileum myenteric plexus-longitudinal muscle preparation was superfused with [3H]choline for 15 min either without being stimulated or during field stimulation at 0.1 or 16 Hz; the preparation was then either removed immediately or after 75- or 135-min superfusion with hemicholinium-3 (HC-3) and the total acetylcholine (ACh) and [3H]ACh contents were determined. For measuring the release of [3H]ACh the preparation was stimulated for 60 min the second time at 0.1 or 16 HZ in the presence of hemicholinium. Exposure to [3H]choline without stimulation resulted in the formation of [3H]ACh stores which were maintained in the first 75 min but decreased therafter. Labelling during stimulation at 16 Hz produced the largest and best maintained [3H]ACh content. Following labelling during 0.1-Hz stimulation, more label could be released than following labelling in the absence of stimulation. Labelling during 16-Hz stimulation did not increase any further in fool of [3H]ACh accessible to release by 0.1-Hz stimulation, but caused a 2.5 times increase in the pool from which Hz stimulation released [3H]ACh. These results suggest that two populations of cholinergic neurons exist in the myenteric plexus, one activated only by high frequency stimulation, the other by both high and low frequency stimulation.  相似文献   

16.
Abstract— The disposition of newly synthesized ACh subsequent to depletion of vesicular endogenous ACh by stimulation was studied in the electromotor nerve terminals of Torpedo marmorata using [3H]acetate as a precursor of ACh. Little vesicular [3H]ACh could be isolated from tissue immediately after stimulation at 1 Hz. After 3 h post-stimulation recovery the newly synthesized [3H]ACh is found predominantly in a subpopulation of vesicles distinct from the vesicles containing most of the endogenous poorly labelled ACh. Restimulation of the tissue causes release of highly labelled ACh with a specific radioactivity (SRA) comparable to that of the newly synthesized [3H]ACh in the highly labelled subpopulation of vesicles and significantly greater than the SRA of ACh in the main vesicular pool or the total tissue.  相似文献   

17.
The acute effects of ethylcholine mustard aziridinium ion (AF64A) and hemicholinium-3 (HC-3) on the release of endogenous acetylcholine (ACh) from isolated tissues were examined. Whereas addition of HC-3 (10−6–10−5 M) significantly reduced the output of ACh from isolated guinea-pig ileum longitudinal muscle strip elicited by 10 Hz stimulation, AF64A had no effect and even enhanced the release of radiolabel elicited by 1 Hz stimulation when this tissue was pre-loaded with [3H]choline. Similarly, HC-3 (10−5 M) reduced ouabain-induced endogenous ACh release from isolated rat hippocampus. Addition of AF64A (10−5−5 × 10−5 M) caused a slight increase in ACh release. In isolated rat cortex, however, AF64A did not affect ACh release. Moreover, AF64A caused a decrease in ouabain-stimulated ACh release from striatum. The present study indicates that: (a) the in vitro actions of AF64A differ from those of HC-3 and (b) the acute effects of AF64A on endogenous ACh release vary, depending on the tissues studied and the stimulation parameters used.  相似文献   

18.
In a rat phrenic nerve-hemidiaphragm preparation, calcitonin gene-related peptide (CGRP) increased the twitch contraction induced by nerve or transmural stimulation dose dependently. Either electrical or high K+ stimulation of the phrenic nerve caused release of a CGRP-like immunoreactive substance (CGRP-LIS) in a Ca2(+)-dependent manner. Electrical stimulation of the phrenic nerve also increased the cyclic AMP content in diaphragm. This increase was not observed in Ca2(+)-free medium and was blocked by antiserum against CGRP. These results indicate that excitation of the motor nerve causes release of CGRP-LIS at nerve terminals and that the released CGRP-LIS increases the cyclic AMP content of skeletal muscles and potentiates twitch contraction.  相似文献   

19.
These experiments measured the effect of 2-(4-phenylpiperidino)cyclohexanol (AH5183) on the release of acetylcholine (ACh) and its subcellular distribution in slices of rat striatum incubated in vitro. The AH5183, a drug that blocks the uptake of ACh by isolated synaptic vesicles, reduced the release of ACh from slices stimulated to release transmitter in response to K+ depolarization. Tissue stimulated in the presence of AH5183 contained more ACh in a nerve terminal cytoplasmic fraction than did tissue stimulated in the drug's absence, but stimulation in AH5183's presence reduced the amount of ACh measured in fractions containing synaptic vesicles. The depletion of ACh caused by stimulating tissue in the presence of AH5183 was more evident in the fraction of nerve terminal ACh occluded within synaptic vesicles as isolated by gradient centrifugation (fraction D) than it was in other nerve terminal occluded stores. It is concluded that the synaptic vesicles isolated as fraction D under the present experimental conditions likely contain releasable transmitter. The AH5183 also depressed the spontaneous release of ACh from incubated slices of striatum and this effect was evident in the presence or the absence of medium Ca2+. It is suggested that this effect might indicate that the process of spontaneous ACh release measured neurochemically results, in part, from an AH5183-sensitive carrier-mediated process.  相似文献   

20.
1. A chemiluminescent procedure for measuring acetylcholine (ACh) has recently been described. The procedure is based on the hydrolysis of ACh by acetylcholinesterase and on the oxidation of choline to betaine and H2O2 by choline oxidase. The H2O2 generated reacts with luminol in presence of peroxidase to produce a light emission. This method is sensitive in the pmol/ml range. 2. On isolated synaptosomes from electric organ, it is possible to obtain an estimate of the cytoplasmic ACh compartment by measuring the light emission after a single freezing and thawing cycle. The vesicular pool which resists several freezing and thawing cycles is then estimated by opening the compartment with a detergent. Increasing the intensity of stimulation of synaptosomes with different agents depletes the ACh content down to the vesicular pool. 3. The release of ACh is not associated with any change in the number of synaptic vesicles as seen in cryofractured synaptosomes. The only ultrastructural change detected common to all stimulations was a decreased density of P face intramembrane particles smaller than 11 nm and an increased density of E face 8 to 18 nm particles. The very significant particle changes were more intense for the conditions releasing more ACh. It is suggested that these particles are involved in the release of ACh from the cytoplasm. An attempt to directly correlate the release of ACh with intramembrane particle changes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号