首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The DNase that is associated with a multiprotein form of HeLa cell DNA polymerase alpha (polymerase alpha 2) has two distinct exonuclease activities: the major activity initiates hydrolysis from the 3' terminus and the other from the 5' terminus of single-stranded DNA. The two exonuclease activities show identical rates of thermal inactivation and coincidental migration during chromatofocusing, glycerol gradient centrifugation, and nondenaturing polyacrylamide gel electrophoresis of the DNase. Moreover, the purified DNase shows a single protein band of Mr 69,000 following nondenaturing polyacrylamide and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The 3'----5' exonuclease activity hydrolyzes only single-stranded DNA substrates and the products are 5' mononucleotides. This activity recognizes and excizes mismatched bases at the 3' terminus of double-stranded DNA substrates. The 3'----5' exonuclease does not hydrolyze 3' phosphoryl terminated single-stranded DNA substrates. The 5'----3' exonuclease activity also only hydrolyzes single-stranded DNA substrates. The rate of hydrolysis, however is only about 1/25th the rate of the 3'----5' exonuclease. This exonuclease activity requires a 5' single-stranded terminus in order to initiate hydrolysis and does not proceed into double-stranded regions. The products of hydrolysis by 5'----3' exonuclease are also 5' nucleoside monophosphates.  相似文献   

2.
The vaccinia virus-induced DNA polymerase has been purified about 500-fold from a cytoplasmic extract of vaccinia-infected HeLa cells. Analysis of the purified fraction by sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals a single polypeptide of 110,000 daltons, which is greater than 95% pure. This polypeptide co-sediments with polymerase activity through a glycerol gradient. The sedimentation coefficient of the enzyme is 6.3 S, and its Stokes radius is 4.6 nm. The molecular weight of the native enzyme derived from these values is 115,000. Vaccinia polymerase is therefore a single large polypeptide of 110,000 to 115,000 daltons. The purified fraction has no significant endonuclease activity, but a strong exonuclease activity co-purifies with polymerase activity through every step in the isolation. The polymerase and exonuclease activities are inactivated at 45 degrees C at the same rate. It is likely, therefore, that both activities are catalyzed by the same polypeptide. The exonuclease hydrolyzes DNA predominantly in the 3' leads to 5' direction, to produce 5' mononucleotides. The exonuclease degrades single-stranded DNA more rapidly than duplex DNA, and the rate of digestion of both single-stranded and double-stranded DNA increases as the size of the substrate decreases. Single-stranded circular DNA is a potent inhibitor of the exonuclease activity, but duplex circular DNA has no significant effect on its activity.  相似文献   

3.
Purified protein p2 of phage phi 29, characterized as a specific DNA polymerase involved in the initiation and elongation of phi 29 DNA replication, contains a 3'----5' exonuclease active on single-stranded DNA, but not on double-stranded DNA. No 5'----3' exonuclease activity was found. The 3'----5' exonuclease activity was shown to be associated with the DNA polymerase since 1) the two activities were heat-inactivated with identical kinetics and 2) both activities, present in purified protein p2, cosedimented in a glycerol gradient.  相似文献   

4.
A 3' to 5' exonuclease activity is associated with phage 029 DNA polymerase   总被引:3,自引:0,他引:3  
Bacteriophage 029 produces its own DNA polymerase which is encoded by gene 2 [Watabe, K. and Ito, J. (1983) Nucleic Acid Res. 11, 8333]. This 029 DNA polymerase has been purified by phospho-cellulose, DEAE-cellulose, double-stranded DNA cellulose chromatography and glycerol gradient centrifugation. An exonuclease activity associated with the DNA polymerase was found through all the steps of the purification. This nuclease preferably degrades single-stranded DNA from the 3' to the 5' terminus direction, suggesting that the enzyme plays a role for proofreading during DNA replication. While DNA polymerase activity isolated from cells infected with temperature sensitive mutant of gene 2 is thermolabile, the nuclease activity is not significantly reduced at the restrictive temperature.  相似文献   

5.
P Szankasi  G R Smith 《Biochemistry》1992,31(29):6769-6773
We have purified to near homogeneity a DNA exonuclease from meiotic cells of Schizosaccharomyces pombe. The enzyme, designated exonuclease II (ExoII), had an apparent molecular weight of 134,000 and was abundant in the cell. It specifically degraded single-stranded DNA in the 5'----3' direction with an apparent Km for 5' DNA ends of 3.6 x 10(-11) M and produced 5' deoxynucleoside monophosphates. Its mode of degradation is similar to that of the RecJ protein from Escherichia coli; ExoII may, therefore, be involved in genetic recombination and DNA damage repair.  相似文献   

6.
3'----5' Exonuclease specific for single-stranded DNA copurified with DNA polymerase of nuclear polyhedrosis virus of silkworm Bombyx mori (BmNPV Pol). BmNPV Pol has no detectable 5'----3' exonuclease activity on single-stranded or duplex DNA. Analysis of the products of 3'----5' exonucleolytic reaction showed that deoxynucleoside monophosphates were released during the hydrolysis of single-stranded DNA. The exonuclease activity cosedimented with the polymerase activity during ultracentrifugation of BmNPV Pol in glycerol gradient. The polymerase and the exonuclease activities of BmNPV Pol were inactivated by heat with nearly identical kinetics. The mode of the hydrolysis of single-stranded DNA by BmNPV Pol-associated exonuclease was strictly distributive. The enzyme dissociated from single-stranded DNA after the release of a single dNMP and then reassociated with a next polynucleotide being degradated.  相似文献   

7.
Yeast cells from a wild type or protease-deficient strain were lysed in the absence or presence of protease inhibitors and the extracts analyzed by analytical high pressure liquid chromatography on diethylaminoethyl silica gel. Conditions that inhibited protease action caused elution of a novel DNA polymerase activity at a position in the gradient distinct from the elution positions of both DNA polymerase I and II. In large scale purifications, this DNA polymerase, called DNA polymerase III, copurified with a single-stranded DNA dependent 3'-5' exonuclease activity, exonuclease III, to near homogeneity. Glycerol gradient centrifugation partially dissociated the complex to yield two peaks of exonuclease III activity, one at 7.7 S together with the DNA polymerase, and one at 4.0 S without polymerase activity. Gel filtration indicated that the complex has a molecular mass greater than 400 kDa. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate indicated that the complex consists of several subunits: 140, 62, 55, and 53 kilodaltons, some of which may be proteolysis products. The exonuclease component of the complex can excise single nucleotide mismatches providing a base-paired primer-template which can be elongated by the DNA polymerase. Under replication conditions, the complex exhibits a measurable turnover rate of dTTP to dTMP and it contains no primase activity. The enzymatic activities of the 3'-5' exonuclease are consistent with a proofreading function during in vivo DNA replication. A second exonuclease activity, exonuclease IV, separated from the complex late in the purification scheme. It degrades both single-stranded and double-stranded DNA in the 5'----3' direction.  相似文献   

8.
In our previous study, we identified four chromatographically distinct DNA-dependent ATPases, B, C1, C2, and C3, in mouse FM3A cells (Tawaragi, Y., Enomoto, T., Watanabe, Y., Hanaoka, F., and Yamada, M. (1984) Biochemistry 23, 529-533). The DNA-dependent ATPase C1 has been purified and characterized in detail. A divalent cation and a polynucleotide cofactor were required for the ATPase activity. Poly(dT), single-stranded circular DNA, and heat-denatured DNA were very effective. Almost no ATPase activity was observed with S1 nuclease-treated native DNA. ATPase C1 hydrolyzed ATP only among the ribo- and deoxyribonucleoside triphosphates tested, and this fact distinguished ATPase C1 from ATPases B, C2, and C3, because the latter enzymes are capable of hydrolyzing both ATP and dATP. The purified DNA-dependent ATPase C1 fraction was shown to have a DNA helicase activity that was dependent on hydrolysis of ATP. The helicase activity and DNA-dependent ATPase activity cosedimented at 5.2 S on glycerol gradient centrifugation. Both activities showed similar preferences for nucleoside 5'-triphosphates and similar requirements for divalent cations. The DNA helicase activity was inhibited by the addition of single-stranded DNAs that served as cofactor for the ATPase activity. The efficiency of a single-stranded DNA to inhibit DNA helicase activity correlated well with the capacity of the DNA to serve as cofactor for DNA-dependent ATPase activity. The helicase was shown to migrate along the DNA strand in the 5' to 3' direction, which is the same direction of migration of the mouse DNA helicase B (Seki, M., Enomoto, T., Yanagisawa, J., Hanaoka, F., and Ui, M. (1988) Biochemistry 27, 1766-1771).  相似文献   

9.
10.
We have studied the properties of the high-Mr DNAse degrading single-stranded DNA which is present in extracts of Bacillus subtilis. This enzyme is a heterogeneous aggregate of identical subunits with an Mr of 36 000, as measured in dodecylsulfate/polyacrylamide electrophoresis. The aggregate can be disassembled by the presence of Triton X-100, but reforms spontaneously following removal of the detergent. A mild proteolytic treatment of the aggregate causes the irreversible and nearly quantitative conversion into the free subunit. The modified subunit has identical properties (in terms of size, chromatographic adsorption and catalytic activity) as the small DNAse previously described by Ciarrocchi et al. [Eur. J. Biochem. 61, 487 (1976)], i.e. an endonuclease highly specific for single-stranded DNA and producing 5'-P and 3'-OH ends.  相似文献   

11.
De novo DNA synthesis on poly(dT) by a novel mouse DNA polymerase, here named "DNA replicase," was examined for the synthesis of RNA which functions as a primer in the subsequent synthesis of DNA. As has been reported previously (Yagura, T., Kozu, T., and Seno, T. (1982) J. Biochem. (Tokyo) 91, 607-618), a novel RNA polymerase activity, which is distinguished from those of classical RNA polymerases, is associated with DNA replicase. The synthesis of RNA and DNA by DNA replicase (Mr = 16 X 10(4), by glycerol gradient sedimentation analysis) was greatly stimulated by a specific stimulating factor (Mr = 13 X 10(4), by glycerol gradient sedimentation analysis) which was found to consist of two subunits (Mr = 63 X 10(3), by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Nearest neighbor analysis in which transfer of 32P from alpha-labeled nucleoside triphosphates to ribo- and deoxyribonucleotides was examined, showed th at RNA of 8-10 nucleotides long was covalently linked to the 5'-end of the DNA product molecule. This RNA, named initiator RNA, had a triphosphate group at its 5' terminus and its size and synthesis were little affected by the addition of high concentrations of deoxynucleoside triphosphate, while in these conditions deoxyribonucleotides were incorporated into initiator RNA to a limited extent. The characteristics of the DNA replicase and stimulating factor that cooperate to synthesize initiator RNA for subsequent DNA synthesis on single-stranded DNA are important because these components seem to be involved in a reaction required to initiate the synthesis of discontinuous earliest DNA intermediates (Okazaki fragments) in chromosomal DNA replication of eukaryotic cells.  相似文献   

12.
The high fidelity of chick embryo DNA polymerase-gamma (pol-gamma) observed during in vitro DNA synthesis (Kunkel, T. A. (1985) J. Biol. Chem. 260, 12866-12874) has led us to examine this DNA polymerase for the presence of an exonuclease activity capable of proofreading errors. Highly purified chick embryo pol-gamma preparations do contain exonuclease activity capable of digesting radiolabeled DNA in a 3'----5' direction, releasing deoxynucleoside 5'-monophosphates. The polymerase and exonuclease activities cosediment during centrifugation in a glycerol gradient containing 0.5 M KCl. In the absence of dNTP substrates, this exonuclease excises both matched and mismatched primer termini, with a preference for mismatched bases. Excision is inhibited by the addition of nucleoside 5'-monophosphates to the digestion reaction. In the presence of dNTP substrates to permit competition between excision and polymerization from the mismatched primer, the exonuclease excises mismatched bases from preformed terminal mispairs with greater than 98% efficiency. The preference for excision over polymerization can be diminished by addition of either high concentrations of dNTP substrates or nucleoside 5'-monophosphates to the exonuclease/polymerase reaction. To determine if this exonuclease is capable of proofreading misinsertions produced during a normal polymerization reaction, a sensitive base substitution fidelity assay was developed based on reversion of an M13mp2 lacZ alpha nonsense codon. In this assay using reaction conditions that permit highly active exonucleolytic proofreading, pol-gamma exhibits a fidelity of less than one error for every 260,000 bases polymerized. As for terminal mismatch excision, fidelity is reduced by the addition to the synthesis reaction of high concentrations of dNTP substrates or nucleoside 5'-monophosphates, both hallmarks of exonucleolytic proofreading by prokaryotic enzymes. Taken together, these observations suggest that the 3'----5' exonuclease present in highly purified chick embryo pol-gamma preparations proofreads base substitution errors during DNA synthesis. It remains to be determined if the polymerase and exonuclease activities reside in the same or different polypeptides.  相似文献   

13.
Highly purified, but not homogeneous, samples of helix-destabilizing protein 1 from mouse myeloma contain a novel oligonucleotide-releasing DNA exonuclease. This enzyme was separated from helix-destabilizing protein 1 and obtained in highly purified form. A polypeptide of Mr 41 000 is a main constituent of the purified enzyme, and this polypeptide comigrated with the exonuclease activity during the final step of the purification, Sephacryl S-200 gel filtration where the enzyme had a native Mr of 40 000. Overall purification of enzyme activity was greater than 20 000-fold. This exonuclease releases 5'-oligonucleotides in a limited processive manner in both the 5'----3' and 3'----5' directions. Activity of the enzyme is resistant to 1 mM N-ethylmaleimide, requires a divalent cation, has an alkaline pH optimum, and degrades single-stranded DNA much faster than double-stranded DNA or RNA. The predominant oligonucleotide product with uniformly labeled substrates is (pdN)2. With 3' end labeled substrates, greater than 95% of the labeled products are (pdN)4 and (pdN)5; with 5' end labeled substrates, the main labeled product is (pdA)2. The rate of product release from 3' and 5' end labeled substrates is nearly identical at 37 degrees C. A model of the action of this enzyme and a comparison with a human placenta exonuclease [Doniger, J., & Grossman, L. (1976) J. Biol. Chem. 251, 4579-4587] are discussed.  相似文献   

14.
Homogeneous gene 5 protein of bacteriophage T7, a subunit of T7 DNA polymerase, catalyzes the stepwise hydrolysis of single-stranded DNA in a 3' leads to 5' direction to yield nucleoside 5'-monophosphates. The gene 5 protein itself does not hydrolyze duplex DNA. However, in the presence of Escherichia coli thioredoxin, the host-specified subunit of T7 DNA polymerase, duplex DNA is hydrolyzed in a 3' leads to 5' direction to yield nucleoside 5'-monophosphates. The apparent Km for thioredoxin in the reaction is 4.8 x 10(-8) M, a value similar to that for the apparent Km of thioredoxin in the complementation assay with gene 5 protein to restore T7 DNA polymerase activity. Both exonuclease activities require Mg2+ and a sulfhydryl reagent for optimal activity, and both activities are sensitive to salt concentration. Deoxyribonucleoside 5'-triphosphates inhibit hydrolysis by both exonuclease activities; hydrolysis of single-stranded DNA by the gene 5 protein is inhibited even in the absence of thioredoxin where there is less than 2% active T7 DNA polymerase. E. coli DNA binding protein (helix destabilizing protein) stimulates the hydrolysis of duplex DNA up to 9-fold under conditions where the hydrolysis of the single-stranded DNA is inhibited 4-fold.  相似文献   

15.
DNA polymerase III, the core of the DNA polymerase III holoenzyme, has been purified 28,000-fold to 97% homogeneity from Escherichia coli HMS-83. The enzyme contains subunits: alpha, epsilon, and theta of 140,000, 25,000, and 10,000 daltons, respectively. The alpha subunit has been previously shown to be a component of both DNA polymerase III and the more complex DNA polymerase III holoenzyme (Livingston, D.M., Hinkle, D., and Richardson, C. (1975) J. Biol. Chem. 250, 461-469; McHenry, C., and Kornberg, A. (1977) J. Biol. Chem. 252, 6478-6484). It is demonstrated here that the epsilon and theta subunits are also subunits of the DNA polymerase III holoenzyme. Thus, the DNA polymerase III holoenzyme contains at least six different subunits. Our preparation has both the 3' leads to 5' and 5' leads to 3' exonuclease activities previously assigned to DNA polymerase III (Livingston, D., and Richardson, C. (1975) J. Biol. Chem. 250, 470-478).  相似文献   

16.
Biochemical evidence is presented that confirms exonuclease V of Escherichia coli consists of three distinct subunits encoded by the recB, recC, and recD genes. The recD gene encodes a Mr 60,000 polypeptide and physically maps 3' to the recB structural gene. The role of the recD subunit in exonuclease V function has been examined by comparing the catalytic activities of the purified RecBCD enzyme with the RecBC enzyme. The RecBC enzyme retains significant levels of DNA-dependent ATPase activity and DNA helicase activity. Endonucleolytic activity on single-stranded covalently closed DNA becomes ATP-dependent. Exonucleolytic activity on either single- and double-stranded DNA was not detected. Taken together with the phenotypic properties of recD null mutants, it appears that the exonucleolytic activities of the RecBCD enzyme are not required for genetic recombination and the repair of either UV-induced photoproducts or mitomycin C-generated DNA cross-links, but are essential for the repair of methyl methanesulfonate-induced methylation.  相似文献   

17.
A single-stranded DNA-dependent ATPase activity, consisting of two subunits of 83 kDa (p90) and 68 kDa (p70), was previously purified from HeLa cells (Vishwanatha, J.K. and Baril, E.F. (1990) Biochem 29, 8753–8759). Homology of the two subunits of single-stranded DNA-dependent ATPase with the human Ku protein (Caoet al. (1994) Biochem 33, 8548–8557) and identity of the Ku protein as the human DNA helicase II (Tutejaet al. (1994) EMBO J. 13, 4991–5001) have been reported recently. Using antisera raised against the subunits of the HDH II, we confirm that the Hela single-stranded DNA-dependent ATPase is the HDH II. Similar to the activity reported for Ku protein, ssDNA-dependent ATPase binds to double-stranded DNA and the DNA-protein complex detected by gel mobility shift assay consists of both the ATPase subunits. The p90 subunit is predominantly nuclear and is easily dissociated from chromatin. The p70 is distributed in cytosol and nucleus, and a fraction of the nuclear p70 protein is found to be associated with the nuclear matrix. Both the p90 and p70 subunits of the ATPase are present in G1 and S phase of the cell cycle and are rapidly degraded in the G2/M phase of the cell cycle.Abbreviations ssDNA single-stranded DNA - dsDNA double-stranded DNA - ATPase adenosine triphosphatase - HDH II human DNA helicase II - PGK 3-phosphoglycerate kinase  相似文献   

18.
An exonuclease, DNase VII, has been purified 6000-fold from human placenta. The enzyme has an apparent molecular weight of 43,000, requires Mg2+ for activity, and has a pH optimum of 7.8. The enzyme hydrolyzes single-stranded and nicked duplex DNA at the same rate proceeding in a 3' leads to 5' direction liberating 5'-mononucleotides. It does not measurably hydrolyze polyribonucleotides.  相似文献   

19.
A DNA polymerase has been highly purified from Anacystis nidulans R2. Electrophoretic analysis in sodium dodecyl sulfate-polyacrylamide gels revealed that the final fraction contains three bands of Mr 107,000, 93,000, and 51,000, respectively. Analysis of purified DNA polymerase activity in situ indicates that of the three polypeptides the Mr 107,000 species has the catalytic activities. The native molecular weight of the enzyme was estimated by glycerol gradient sedimentation to be 100,000. The enzyme has an absolute requirement for a divalent cation. Mg2+ can be replaced with Mn2+, but the DNA polymerase is less active. Potassium chloride stimulates the enzyme, while potassium phosphate has no apparent effect. The enzyme is active over a pH range from 7.5 to 9.5 in 50mM Tris-HCl buffer. The ability of the cyanobacterial DNA polymerase to use activated DNA as a template, its associated 3'----5' and 5'----3' exonuclease activities, as well as its resistance to N-ethylmaleimide, dideoxynucleotides, arabinosyl-CTP and aphidicolin suggest a similarity between this enzyme and E. coli DNA polymerase I. This is the first characterization of a DNA polymerase from a cyanobacterium.  相似文献   

20.
Escherichia coli contains multiple enzymes that hydrolyze deoxyribose fragments (phosphoglycolaldehyde, PGA) from the 3' termini of a synthetic DNA substrate. The major such activities are the main bacterial apurinic endonucleases, exonuclease III and endonuclease IV. In a double mutant deficient in both of these oxidation repair enzymes, Mg++-dependent 3'-PGA diesterase was detected at 3% the level found in wild-type bacteria. Gel filtration fractionated this residual diesterase activity into two peaks of Mr 40,000-52,000 (Pool A) and Mr 22,000-30,000 (Pool B) with differing abilities to remove 3'-phosphates from DNA. These multiple repair activities were resolved in 3'-PGA diesterase activity gels. The exonuclease III and endonuclease IV bands were identified using the purified proteins and by their specific absence from strains defective for the respective structural genes. Gel filtration Pool B yielded two activity bands of apparent Mr 25,000 and 28,000, but Pool A did not form a new band in the activity gels. Incubation of activity gels in different transition metals or boiling of the samples before electrophoresis also served to distinguish the various activities. The possible identities of the novel E. coli 3'-PGA diesterases and the importance of multiple repair enzymes for 3' damages are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号