首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Exposure of Escherichia coli cells to myxin results in the almost complete inhibition of new deoxyribonucleic acid (DNA) synthesis, extensive degradation of pre-existing intracellular DNA, and a rapid loss of viability in these cells (9). After exposure to myxin for 30 min (<1% survivors and >25% degradation of DNA), infection of these cells by T4 bacteriophage results in the renewal of DNA synthesis at a rate essentially equal to that found in T4-infected cells in the absence of myxin. This DNA was characterized as T4 DNA by hybridization and by hydroxyapatite chromatography. These results suggest that the primary site of action of myxin does not involve the biochemical pathways involved in either the energy metabolism or the biosynthesis of DNA precursors in the uninfected host cell. The yield of infectious T4 particles was reduced when myxin was present during multiplication. This effect may be partly accounted for by the finding that a significant fraction of the T4 DNA synthesized in the presence of myxin is apparently not properly enclosed by the bacteriophage protein coat since it is shown to be degraded by exogenous nuclease.  相似文献   

2.
Lysis Inhibition in Escherichia coli Infected with Bacteriophage T4   总被引:10,自引:5,他引:5       下载免费PDF全文
A technique of continuous filtration of T4-infected Escherichia coli has been devised to study the phenomenon of lysis inhibition. Studies using this technique revealed that the length of the lysis delay caused by superinfection can attain only certain discrete values, which for low average multiplicity of superinfection is thought to be a reflection of the actual number of superinfecting particles per cell. The time interval between primary and superinfection had little effect on the length of lysis delay. With increasing rate of superinfection, the length of lysis delay decreased. In superinfected cells, the concentration of endolysin exceeded the final concentration in nonsuperinfected cells. Superinfection of a lysing culture induced lysis inhibition immediately. Temperature-shift experiments, with cells primarily infected by a temperature-sensitive endolysin mutant, revealed that after the normal latent period superinfection was unable to induce lysis inhibition. Amber-restrictive cells, which were primarily infected by an endolysin negative amber mutant, released adenosine triphosphate (ATP) at the end of the normal latent period although lysis did not occur. Superinfection reduced the loss of ATP markedly. The hypothetical role of the cytoplasmic membrane in lysis inhibition is discussed.  相似文献   

3.
An Escherichia coli K-12 biofilm was grown at a dilution rate of 0.028 h(-1) for 48 h in a glucose-limited chemostat coupled to a modified Robbins' device to determine its susceptibility to infection by bacteriophage T4. Bacteriophage T4 at a multiplicity of infection (MOI) of 10 caused a log reduction in biofilm density (expressed as colony forming units (CFU) per cm2) at 90 min postinfection. After 6 h, a net decrease and equilibrium in viral titer was seen. When biofilms were exposed to T4 phage at a MOI of 100, viral titer doubled after 90 min. After 6 h, viral titers (expressed as plaque forming units (PFU) per cm2) stabilized at levels approximately one order of magnitude higher than seen at a MOI of 10. Scanning confocal laser microscopy images also indicated disruption of biofilm morphology following T4 infection with the effects being more pronounced at a MOI of 100 than at a MOI of 10. These results imply that biofilms under carbon limitation can act as natural reservoirs for bacteriophage and that bacteriophage can have some influence on biofilm morphology.  相似文献   

4.
Three independent parameters (eclipse and latent periods, and rate of ripening during the rise period) are essential and sufficient to describe bacteriophage development in its bacterial host. A general model to describe the classical "one-step growth" experiment [Rabinovitch et al. (1999a) J. Bacteriol.181, 1687-1683] allowed their calculations from experimental results obtained with T4 in Escherichia coli B/r under different growth conditions [Hadas et al. (1997) Microbiology143, 179-185]. It is found that all three parameters could be described by their dependence solely on the culture doubling time tau before infection. Their functional dependence on tau, derived by a best-fit analysis, was used to calculate burst size values. The latter agree well with the experimental results. The dependence of the derived parameters on growth conditions can be used to predict phage development under other experimental manipulations.  相似文献   

5.
When Escherichia coli B, labeled by prior growth in 14C-glucose, are infected with T4 phage there is a rapid release of 14C-nondialyzable material into the medium. About half of this material is derived from the cell envelope as evidenced by its content of phospholipid and lipopolysaccharide and its buoyant density upon isopycnic ultracentrifugation of 1.19 g/cm3. It is similar in its gross chemical and physical properties to envelope material released at a lower rate from growing uninfected cells or from cells whose protein synthesis is inhibited by chloramphenicol (22). The rate of release of this envelope material at a multiplicity of infection (MOI) of 10 is greatest in the first minute after infection, and release is completed by 4 min. The rate of its release, as a function of MOI at 2 min after infection, is greatest at low MOI (e.g., MOI 2 and 4); in addition, the release does not continue above MOI 30. The main conclusion derived from the data is that phage, as part of the process of adsorption and injection of DNA, cause an increased release of envelope substance from the cells. With the assumption that all of the envelope material released is derived from the outer envelope, it is estimated that uninfected cells release 20 to 30% of their outer envelope per hour, whereas infected cells release 30% in 2 min at MOI 30. Further, because release does not continue at high MOI, this phenomenon is not considered to be a direct cause of lysis from without. Data are also presented on the amounts of other non-dialyzable 14C-components released and on the differences in the kinetics of release from chloramphenicol-treated cells compared to phage-infected cells. To avoid the possibility that the release is due to phage lysozyme which is an adventitious “contaminant” of wild-type phage, a phage mutant (T4BeG59s) devoid of this enzyme was used in these experiments.  相似文献   

6.
Deoxyribonucleoside triphosphates are incorporated into T4 DNA in infected cells treated with toluene. Under the proper conditions the incorporation is controlled by the known T4 DNA polymerase and proceeds by a semiconservative mechanism. Both strands of the phage DNA are replicated into a high molecular weight progeny molecule. The replication system is accessible to extracellular pancreatic DNase added to the reaction mixture. At early times after infection a second replication system, not under control of the gene 43 polymerase, has been detected which synthesizes T4 DNA in toluenized cells.  相似文献   

7.
Hydrolysis of phospholipids was observed to start about 15 min after Escherichia coli S/6 cells were infected with T4rII bacteriophage mutants. Hydrolysis continued through the latent period and well past the time when cell lysis occurs. The hydrolytic products that accumulated were free fatty acids, 2-acyl lysophosphatidylethanolamine, and various lysocardiolipins. These products indicated the action of phospholipase A(1). From 15 to 22 min after infection, there were equivalent amounts of fatty acids and lysophosphatides in extracts of cellular lipids. Thereafter, free fatty acids were produced in excess. This suggests that lysophospholipase was active at the later time. We also observed a stoichiometric relation between loss of phosphatidylglycerol and increase of cardiolipin plus lysocardiolipins. This continued well past the normal lysis time (25 min). The appearance of lipase activities during the latent period seems to be specific to infection with rII mutants. Neither the wild-type bacteriophage nor rI mutants produced similar activities by 22 min after infection.  相似文献   

8.
A mutant of Escherichia coli B, defective in its accumulation of K+, was found to synthesize protein at a rate proportional to the level of this cation in the growth medium. When bacteriophage T4-infected cells were incubated in growth medium containing 1 mm K+, phage deoxyribonucleic acid (DNA) was synthesized at a rate 25% that of normal, and phage protein was synthesized at a rate of 50% of normal. Deoxycytidine pyrophosphatase, a phage-directed early enzyme, shut off at a level of 55% that of normal when infected cells were incubated in medium containing 1 mm K+. However, deoxycytidine pyrophosphatase synthesis resumed in these cells when they were shifted to medium containing the normal K+ concentration (33 mm). DNA synthesis also attained the rate characteristic of this K+ concentration. These results suggest that phage DNA synthesis is not sufficient to repress early protein formation and also indicate that the inhibitor of early protein formation is an early function whose synthesis is sensitive to the same repression as that of the early proteins.  相似文献   

9.
Phage T4 is among the best-characterized biological systems (S. Kanamaru and F. Arisaka, Seikagaku 74:131-135, 2002; E. S. Miller et al., Microbiol. Mol. Biol. Rev. 67:86-156, 2003; W. B. Wood and H. R. Revel, Bacteriol. Rev. 40:847-868, 1976). To date, several genomes of T4-like bacteriophages are available in public databases but without any APEC bacteriophages (H. Jiang et al., Arch. Virol. 156:1489-1492, 2011; L. Kaliniene, V. Klausa, A. Zajanckauskaite, R. Nivinskas, and L. Truncaite, Arch. Virol. 156:1913-1916, 2011; J. H. Kim et al., Vet. Microbiol. 157:164-171, 2012; W. C. Liao et al., J. Virol. 85:6567-6578, 2011). We isolated a bacteriophage from a duck factory, named HX01, that infects avian pathogenic Escherichia coli (APEC). Sequence and morphological analyses revealed that phage HX01 is a T4-like bacteriophage and belongs to the family Myoviridae. Here, we announce the complete genome sequence of phage HX01 and report the results of our analysis.  相似文献   

10.
High-resolution autoradiography has been employed to localize the nonsolubilized but genetically excluded deoxyribonucleic acid (DNA) of T4 bacteriophage superinfecting endonuclease I-deficient Escherichia coli. This DNA was found to be associated with the cell envelope (this term is used here to include all cellular components peripheral to and including the cytoplasmic membrane); in contrast, T4 DNA in primary infected cells, like host DNA in uninfected E. coli, was found to be near the cell center. The envelope-associated DNA from super-infecting phage was not located on the outermost surface of the cell since it was insensitive to deoxyribonuclease added to the medium. These results suggest that DNA from superinfecting T-even phage is trapped within the cell envelope.  相似文献   

11.
Genetic evidence for site- and gene-specific variation in limited heterocatalytic expression in phage T4-infected Escherichia coli is reported, and the implications of such variation are discussed.  相似文献   

12.
Effects of bromodeoxyuridine (BUdR) substitutions in phage T4 DNA on the initial stages of DNA replication were investigated. Electron microscope studies of partially replicated, light (thymidine-containing) T4 DNA revealed the presence of multiple loops and forks. These DNA preparations had no BUdR in either parental or newly synthesized DNA, and the observations thus show that multiple initiation of DNA replication is a normal event in T4 development and is not caused by the presence of BUdR. A comparison of early replicative stages of light and heavy (BUdR-containing) DNA in cells mixedly infected with light and heavy T4 phage showed that early DNA synthesis occurs preferentially on the light template. Heavy and light parental DNA became associated with the protein complex of replicative DNA with equal efficiency, and there was no effect of BUdR on the net rate of DNA synthesis after infection. Newly synthesized DNA from heavy templates sedimented more slowly through alkaline sucrose gradients than did newly synthesized DNA from light templates and appeared to represent fewer replicative regions per molecule. These data indicate that BUdR substitutions in the DNA caused a slight delay in initiation but that replication of heavy DNA proceeded normally once initiated.  相似文献   

13.
Deoxyribonucleic acid replication and genetic recombination were investigated after infection of Escherichia coli with ligase-deficient rII bacteriophage T4D. The major observations are: (i) deoxyribonucleic acid synthesis is discontinuous, (ii) the discontinuities are more slowly repaired than in wild-type infection, (iii) host ligase is required for viability, and (iv) genetic recombination is increased.  相似文献   

14.
The plaque enlargement of wild-type T4 bacteriophage observed when assayed in the presence of low concentrations of mitomycin C or after exposure to very low doses of ultraviolet light was studied by using solid as well as liquid culture media. It was found that the filamentous cell formed by the treatment with the agents is responsible for the phenomenon. The filamentous cell was also shown to be characterized not only by the loss of capacity of lysis inhibition but also by a shortening of the latent period. No difference in cellular rigidity could be seen between the filamentous cell and normal cell as far as the analysis from the outside of the cell was concerned, whereas the former cell was shown to be more readily susceptible to phage-induced lysozyme from the inside of the cell. A possible change in the membrane of the filamentous cell and a possible mechanism for lysis inhibition are discussed.  相似文献   

15.
The effect of p-fluorophenylalanine (FPA) on deoxyribonucleic acid (DNA) synthesis and chromosome replication was studied in a thymine-requiring mutant of Escherichia coli. The rate and extent of chromosome replication were followed by labeling the DNA with isotopic thymine and a density marker, bromouracil. The DNA was extracted and analyzed by CsCl gradient centrifugation. The block in chromosome replication caused by high concentrations of FPA occurred at the same point on the chromosome as that caused by amino acid starvation. In a random culture, DNA in cells treated with FPA replicated only slightly slower than the DNA from cells that were not exposed to the analogue. In cultures which had been previously starved for thymine, however, the DNA from the cells treated with FPA showed a marked decrease in the rate and extent of replication. It was concluded that the E. coli cell is most sensitive to FPA when a new cycle of chromosome replication is being initiated at the beginning of the chromosome.  相似文献   

16.
Acridine Sensitivity of Bacteriophage T2H in Escherichia coli   总被引:1,自引:0,他引:1       下载免费PDF全文
Normally acridine-sensitive, Escherichia coli-T2H complexes are rendered acridine-resistant if the infecting bacteriophage mutant is either pr or q. If these pr or q mutants are treated to produce sensitive revertants, one obtains a mutation at any of several dye-sensitizing (ds) sites in the early enzyme region of the T2 map. The ds mutants are nonspecific suppressors because they reduce the resistance of complexes containing either pr or q to proflavine. The ds mutants are not identical in action, since some make pr or q sensitive to proflavine and quinacrine, and others, to proflavine alone. Two ds mutants have r to r(+) mutation patterns which differ, depending upon whether or not the ds is coupled with r7 (an rII mutant). The mutation patterns of r(+) to r are the same for both ds mutants and for wild type. We suggest that dye sensitization may consist of alterations of early enzymes so as to produce slightly different forms of deoxyribonucleic acid which are in turn dyesensitive.  相似文献   

17.
The folded genome of Escherichia coli is converted to a slower-sedimenting form within 5 min after infection with bacteriophage T4 or T4nd28(den A)-amN82(44). Chloramphenicol sensitivity and response to UV-irradiation of the phage suggest participation of viral-induced functions.  相似文献   

18.
Bacteriophage ST-1 replication requires DNA polymerase III (dnaE) but not DNA polymerases I or II, DNA ligase, or the products of dnaA, B, or C-D. It was not certain whether dnaG was required. These results differ considerably from those reported for X-174.  相似文献   

19.
An extensive screening of coliphage T4 mutants has revealed two distinct classes defective, respectively, in the two sequential phage-induced phosphorylations of the host RNA polymerase, alteration and modification. The existence of these mutants proves that T4-specified functions are involved in both processes. The viabilities of these mutants demonstrate that neither alteration nor modification is essential for growth in Escherichia coli B/r. Physiological studies after infection of E. coli B/r have failed to reveal any abnormalities of phage deficient in alteration or modification. Both mutants normally inhibit host protein and stable RNA synthesis and normally express all classes of T4 genes. Thus, these specific phage-induced structural changes in the host RNA polymerase are not fundamental to the control of gene expression during T4 development. Alteration and modification may be required for growth in some strains of E. coli and hence be selectively advantageous because they extend the normal host range of the phage.Alteration appears to be catalyzed by a T4 function injected with the DNA. A polypeptide of molecular weight 61,000, which is probably cleaved during morphogenesis from a precursor of molecular weight 79,000, is missing in phage particles of alteration-deficient strains and may be the phage activity so injected. The T4 gene involved in alteration is named alt.Modification is controlled by a T4-replicative gene that has been mapped into a region of about 500 base-pairs between genes 39 and 56. These mapping data show that the defect in α modification defines a new T4 gene, named mod.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号