共查询到20条相似文献,搜索用时 10 毫秒
1.
Yuh-Jiin Jong Adrian Sheldon Guo H. Zhang Naomi Kraus-Friedmann 《The Journal of membrane biology》1990,118(1):49-53
Summary The Ca2+-ATPase from rat liver microsomes has been solubilized in Triton X-100 and purified to homogeneity by ficollsucrose treatment, column chromatography with agarose-hexane adenosine 5-triphosphate Type 2, and high pressure liquid chromatography (HPLC). The purified enzyme obtained by this sequential procedure exhibited a 183-fold increase in specific activity. After ficoll-sucrose treatment, the activity of the Ca2+-ATPase was stable for at least two weeks when stored at –70°C. In SDS-polyacrylamide gels, several fractions from HPLC chromatography showed a single band at a position corresponding to a molecular weight of about 107 kDa. This value is consistent with the molecular weight of the phosphoenzyme intermediate of endoplasmic reticulum (ER) Ca2+-ATPase. Further characterization of the ER Ca2+-ATPase was performed by western immunoblots. Antiserum raised against the 100-kDa sarcoplasmic reticulum (SR) Ca2+-ATPase cross-reacted with the purified Ca2+-ATPase from rat liver ER membranes. 相似文献
2.
Rat liver microsomal fraction was incubated at pH 8.8 with fluorescein-5'-isothiocyanate in a Tris-buffered sucrose medium. This treatment completely inhibited ATP-dependent Ca2+ transport, Ca2+-ATPase activity, and Ca2+-ATPase phosphoenzyme intermediate formation. Inhibition of Ca2+ transport and phosphoenzyme intermediate formation by fluorescein-5'-isothiocyanate was partially prevented by including ATP in the treatment medium. These data taken together are consistent with the proposal that fluorescein-5'-isothiocyanate binds the Ca2+-ATPase ATP-binding site, suggesting the presence of a lysine residue in this domain. Fluorescein-5'-isothiocyanate labeling of microsomal proteins had no measurable effect on the basal, Mg2+-ATPase activity. Using fluorescein-5'-isothiocyanate-labeled microsomal fraction, we demonstrated that the Mg2+-ATPase activity was inhibited by Ca2+. 相似文献
3.
The Ca(2+)-ATPase activity of rat brain microsomes was studied in streptozotocin (STZ)-induced diabetes. Male rats, 200-250 g, were rendered diabetic by injection of STZ (45 mg kg(-1) body weight) via the teil vein. Brain tissues were collected at 1, 4 and 10 weeks after diabetes was induced for determination of Ca(2+)-ATPase activity, lipid peroxidation and tissue calcium levels. Diabetic rats had significantly elevated blood glucose levels compared to controls. Blood glucose levels were 92.92 +/- 1.22 mg dl(-1) (mean +/- SEM) for the control group, 362.50 +/- 9.61 mg dl(-1) at 1 week and >500 mg dl(-1) at 4, 8 and 10 weeks for the diabetics. Enzyme activities were significantly decreased at 1, 4, 8 and 10 weeks of diabetes relative to the control group (p < 0.001). Ca(2+)-ATPase activity was 0.084 +/- 0.008 U l(-1), 0.029 +/- 0.005 U l(-1), 0.029 +/- 0.006 U l(-1), 0.033 +/- 0.003 U l(-1) and 0.058 +/- 0.006 U l(-1) (mean +/- SEM) at control, 1, 4, 8 and 10 week of diabetes respectively. The change in calcium levels in diabetic rat brain at 8 and 10 weeks of diabetes was significantly higher than that of the control group (p < 0.05). On the other hand lipid peroxidation measured as TBARS (thiobarbituric acid reactive substances) was significantly higher at 8 and 10 weeks of diabetes (p < 0.05). The increase in lipid peroxidation observed in diabetic rat brain may be partly responsible for the decrease in calcium ATPase activity. 相似文献
4.
G H Zhang M Yamaguchi S Kimura S Higham N Kraus-Friedmann 《The Journal of biological chemistry》1990,265(4):2184-2189
In isolated hepatic microsomal vesicles the heavy metals Cd2+, Cu2+, and Zn2+ inhibit Ca2+ uptake and evoke a prompt efflux of Ca2+ from preloaded vesicles in a dose-dependent manner. N-Ethylmaleimide also inhibits Ca2+ uptake and causes Ca2+ release, but it is less effective in these respects than the heavy metals. Measurement of mannose-6-phosphatase activity indicate that the heavy metal-induced Ca2+ efflux is not caused by a general increase in membrane permeability. Heavy metals also inhibit the Ca2(+)-ATPase activity and the formation of the phosphorylated intermediate of the enzyme. In contrast, the sulfhydryl modifying reagent, N-ethylmaleimide inhibits the Ca2(+)-ATPase activity while it has a relatively small effect on Ca2+ release. Thus, the effects of these agents on Ca2+ sequestering and Ca2(+)-ATPase activity are not strictly proportional. The sulfhydryl group reducing agent dithiothreitol protects the microsomes from the effects of heavy metals, while glutathione is less protective. Addition of vanadate to vesicles, at a concentration which completely blocked the activity of the Ca2(+)-ATPase, resulted in a small and slow release of the accumulated Ca2+. Subsequent additions of heavy metals evoked a massive Ca2+ release. Thus, the effects of heavy metals on Ca2+ efflux cannot be due entirely to their inhibition of the Ca2+ pump. The heavy metal-induced Ca2+ efflux is not inhibited either by ruthenium red or tetracaine. 相似文献
5.
ATP has been synthesized by the purified Ca2+ + Mg2+-dependent ATPase from sarcoplasmic reticulum (SR) solubilized in nonionic detergent dodecyloctaoxyethylenglycol-monoether in a solution containing inorganic phosphate and glycerol by changing pH upon addition of ADP. The Ca2+ concentration is kept constant during the experiment. Optimum synthesis is found at CaCl2 = 0.6 mM and the delta pH = 2.9 +/- 0.2. The enzyme has been digested by trypsin for 1 and 20 min, and it is found that synthesis of ATP is correlated with the Ca2+-uptake into SR. The data indicate that the enzyme alone is responsible for active transport of Ca2+ in SR. The driving force for the ATP synthesis of the process may be due to various ion-protein interactions. H+ cannot substitute for Ca2+ in the synthesis of ATP but acts probably through a modification of the Ca2+ binding sites. The data give support that the integrity of the enzyme molecule between its hydrolytic site and the Ca2+-binding sites is essential for the overall Ca2+ transport. 相似文献
6.
The effects of Mg2+ on rat liver microsomal Ca2+ sequestration 总被引:1,自引:0,他引:1
The effects of Mg2+ on the hepatic microsomal Ca2(+)-sequestering system was tested. Ca2(+)-ATPase activity and Ca2+ uptake were both dependent on the concentration of free Mg2+, reaching maximum levels at 2 mM. The effects of Mg-ATP were also influenced by the concentration of free Mg2+, being maximally effective at a ratio of 1:1. The results suggest that Mg2+ influences Ca2+ sequestration at various steps, namely in addition to forming the substrate of the Ca2(+)-ATPase reaction, Mg-ATP, Mg2+ stimulates the reaction at an additional step, as indicated by its stimulatory effect on the Ca2(+)-ATPase reaction and on Ca2+ uptake, even at optimal Mg-ATP levels. The stimulatory effect of Mg2+ was evident at various pH levels tested, and it was nucleotide specific. The stimulatory effect of Mg2+ might be exerted at the dephosphorylation step of the enzymatic reaction or at an other, yet undefined, site. The results demonstrate a plural effect of Mg2+ on the hepatic microsomal sequestration system. This indicates that, depending on its magnitude, changes in Mg2+ distribution might influence cytosolic Ca2+ levels. 相似文献
7.
Coupling of Ca2+ transport to ATP hydrolysis by the Ca2+-ATPase of sarcoplasmic reticulum: potential role of the 53-kilodalton glycoprotein 总被引:2,自引:0,他引:2
An essential feature of the function of the Ca2+-ATPase of sarcoplasmic reticulum (SR) is the close coupling between the hydrolysis of ATP and the active transport of Ca2+. The purpose of this study is to investigate the role of other components of the SR membrane in regulating the coupling of Ca2+-ATPase in SR isolated from rabbit skeletal muscle, reconstituted SR, and purified Ca2+-ATPase/phospholipid complexes. Our results suggest that (1) it is possible to systematically alter the degree of coupling obtained in reconstituted SR preparations by varying the [KC1] present during cholate solubilization, (2) the variation in coupling is not due to differences in the permeability of the reconstituted SR vesicles to Ca2+, and (3) vesicles reconstituted with purified Ca2+-ATPase are extensively uncoupled under our experimental conditions regardless of the lipid/protein ratio or phospholipid composition. In reconstituted SR preparations prepared by varying the [KC1] present during cholate treatment, we find a direct correlation between the relative degree of coupling between ATP hydrolysis and Ca2+ transport and the level of the 53-kilodalton (53-kDa) glycoprotein of the SR membrane. These results suggest that the 53-kDa glycoprotein may be involved in regulating the coupling between ATP hydrolysis and Ca2+ transport in the SR. 相似文献
8.
Voltage-dependence of Ca2+ uptake and ATP hydrolysis of reconstituted Ca2+-ATPase vesicles 下载免费PDF全文
Ca2+-ATPase from sarcoplasmic reticulum was reconstituted into phospholipid/cholesterol (9:1) vesicles (RO). Sucrose density gradient centrifugation of the RO vesicles separated a light layer (RL) with a high lipid/protein ratio and a heavy layer (RH). RH vesicles exhibited a high rate of Ca2+-dependent ATP hydrolysis but did not accumulate Ca2+. RL vesicles, on the other hand, showed an initial molar ratio of Ca2+ uptake to ATP hydrolysis of approximately 1.0. Internal trapping of transported Ca2+ facilitated studies over periods of several minutes. Ca2+ transport and ATP hydrolysis declined concomitantly, reaching levels near 0 with external Ca2+ concentrations less than or equal to 2 microM. Ca2+ uptake was inhibited by the Ca2+ ionophore A23187, the detergent Triton X-100, and the metabolic inhibitor quercetin. Ca2+ transport generated a transient electrical potential difference, inside positive. This finding is consistent with the hypothesis that the Ca2+ pump is electrogenic. Steady state electrical potentials across the membrane were clamped by using potassium gradients and valinomycin, and monitored with voltage-sensitive dyes. Over a range of +50 to -100 mV, there was an inverse relationship between the initial rate of Ca2+ uptake and voltage, but the rate of ATP hydrolysis was nearly constant. In contrast, lowering the external Ca2+ concentration depressed both transport and ATP hydrolysis. These findings suggest that the membrane voltage influences the coupling between Ca2+ transport and ATP hydrolysis. 相似文献
9.
The calcium dependency of the Ca2+-pump ATPase of rat cardiac sarcolemma was investigated in the presence and absence of EGTA and EDTA in combination with two free Mg2+-ion concentrations. The results showed: that Mg2+-ions are not essential for the turnover of the Ca2+-pump ATPase; that the Ca2+-affinity is regulated by the concentration of the calcium-chelator complex present in the medium; that (Ca2+-Mg2+)-ATPase and Ca2+-ATPase are probably expressions of the same Ca2+-pump ATPase in the plasma membrane of the cell. 相似文献
10.
The Ca2+-stimulated, Mg2+-dependent ATPase from rat liver plasma membranes was solubilized using the detergent polyoxyethylene 9 lauryl ether and purified by column chromatography using Polybuffer Exchanger 94, concanavalin A-Sepharose 4B, and Sephadex G-200. The molecular weight of the enzyme, estimated by gel filtration in the presence of the detergent on a Sephadex G-200 column, was 200,000 +/- 15,000. The enzyme was purified at least 300-fold from rat liver plasma membranes and had a specific activity of 19.7 mumol/mg/min. Polyacrylamide gel electrophoresis under nondenaturing conditions of the purified enzyme indicated that the enzymatic activity correlated with the major protein band. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis, one major band in the molecular weight range of 70,000 +/- 5,000 was seen. The isoelectric point of the purified enzyme was 6.9 +/- 0.2 as determined by analytical isoelectric focusing. The enzyme was activated by Ca2+ with an apparent half-saturation constant of 87 +/- 2 nM for Ca2+. Calmodulin and trifluoperazine at the concentration of 1 microgram/ml and 100 microM, respectively, had no effect on the enzymatic activity. 相似文献
11.
12.
Chengjing Cao Timothy Lockwich Terrence L. Scott Robert Blumenthal Adil E. Shamoo 《Molecular and cellular biochemistry》1991,103(2):97-111
Summary In reconstituted rabbit skeletal muscle (Ca2+ + Mg2+)-ATPase proteoliposomes, Ca2+-uptake is decreased by more than 90% with T2 cleavage (Arg-198). However, no difference in the ATP dependence of hydrolysis activity is seen between SR and trypsin-treated SR. A large decrease in E-P formation and hydrolysis activity of the enzyme appear only at T3 cleavage, which represents the cleavage of A1 fragment to A1a + A1b forms. The disappearance of hydrolysis activity due to digestion is prior to the disappearance of E-P formation. No significant difference is found in the passive Ca2+ efflux between control SR and tryptically digested SR in the absence of Mg+ ruthenium red or in the presence of ATP. However, the passive Ca2+ efflux rate for tryptically digested SR is much larger than control SR in the presence of Mg2+ + ruthenium red. These results show that the Ca2+ channel cannot be closed after trypsin digestion of SR membranes by the presence of the Ca2+ channel inhibitors, Mg2+ and ruthenium red. In the reconstituted ATPase proteoliposomes, the Ca2+ efflux rates are the same regardless of digestion (T2); also, efflux is not affected by the presence or absence of Mg2+ + ruthenium red. These results indicate that T2 cleavage causes uncoupling of the Ca2+-pump from ATP hydrolytic activity.A theoretical model is developed in order to fit the extent of tryptic digestion of the A fragment of the (Ca2+ + Mg2+)-ATPase polypeptide with the loss of Ca2+-transport. Fits of the theoretical equations to the data are consistent with that Ca2+-transport system appears to require a dimer of the polypeptide (Ca2+ + Mg2+)-ATPase. 相似文献
13.
K M Chan D M Delfert S L Koepnick J M McDonald 《Archives of biochemistry and biophysics》1987,256(2):472-479
In an initial attempt to use calmodulin antagonists as probes to study the role of calmodulin in the modulation of Ca2+ uptake activity in the endoplasmic reticulum of rat liver, we noticed that W7 had a differential effect on the Ca2+ uptake and Ca2+-ATPase activities. To test the specificity of this effect and explore the underlying mechanism, we examined the effects of W7 on Ca2+ accumulation and release by endoplasmic reticulum in both permeabilized hepatocytes and a subcellular membrane fraction (microsomes) enriched in endoplasmic reticulum. W7 reduced the steady-state Ca2+ accumulation in both preparations in a dose-dependent fashion but the half-maximal inhibitory concentrations were different for Ca2+ accumulation (90 microM) and Ca2+-ATPase activity (500 microM). Kinetic analysis indicated that the inhibition of both Ca2+ uptake and Ca2+-ATPase activity by W7 was noncompetitive with respect to Ca2+ and ATP. Addition of W7 did not enhance the rate of Ca2+ efflux from microsomes after Ca2+ influx had been terminated. The effect of W7 was apparently not related to its calmodulin antagonist properties as the phenomenon could not be demonstrated with the other more specific calmodulin antagonists, calmidazolium or compound 48/80. A similar observation with W7 has also been reported with the endoplasmic reticulum of pancreatic islets (B. A. Wolf, J. R. Colca, and M. L. McDaniel (1986) Biochem. Biophys. Res. Commun. 141, 418-425). We concluded that the effects of W7 on microsomal Ca2+ handling were not the result of increased membrane permeability to Ca2+ but rather were due to dissociation of Ca2+ uptake from Ca2+-ATPase activity. 相似文献
14.
Subir K. NagDas Shyamali Mukherjee Barsanjit Mazumder Parimal C. Sen 《Molecular and cellular biochemistry》1988,79(2):161-169
Rat testicular microsomal membrane fraction contains both Mg+2-dependent and Mg+2-independent Ca+2-ATPase activity. The latter activity is about two times higher than the former. Calcium ion required for maximum activation
of Mg+2-independent Ca+2-ATPase in 3.0 mM, whereas for the dependent one it is 2.5 mM. Both the enzymes are resistant to cold shock upto seven days.
Histidine and imidazole buffers are found to be the most suitable for dependent and independent enzyme activities, respectively.
The pH optima for dependent one is 7.5, whereas for the independent one it is 8.5. Temperature optima for the former is 37°C
and for latter one it is 40°C. Among all the nuclestides tested, ATP is found to be the best substrate for both the enzymes.
The optimum concentration of ATP for dependent and independent enzyme activities are 3.0 mM and 1.5 mM respectively. Divalent
metal ions like Zn+2, Ba+2 and Mn+2 have been found to inhibit Mg+2-dependent Ca+2-ATPase activity whereas Mg+2-independent Ca+2-ATPase activity is inhibited by the divalent ions except zinc which is found to stimulate the enzyme activity. Both the enzymes
are inhibited by vanadata, EDTA and EGTA. I50, for vanadate is 0.05 and 0.125 mM for dependent and independent activities, respectively. Sulfhydral groups modifying agents
e.g., NEM, DTNB and chlorpromazine are found to affect the enzyme activities in different ways. Thus NEM and chlorpromazine
are found to inhibit and DTNB stimulate the enzyme activities in both the cases. 相似文献
15.
Some properties of the Ca2+-stimulated ATPase of a rat liver microsomal fraction 总被引:2,自引:3,他引:2 下载免费PDF全文
1. The heavy microsomal fraction from rat liver apparently has very little Ca2+-stimulated ATPase activity, although it has an active, ATP-driven Ca2+ accumulation system. 2. The addition of ionophore A23187 to the ATPase assay, to allow continuous Ca2+ recycling during the assay time, reveals the presence of a substantial Ca2+-stimulated ATPase with Vmax. 160 nmol of Pi/10 min per mg of protein and Km for Ca2+ 0.19 microM. 3. The Ca2+-stimulated ATPase, but not the basal Mg2+-stimulated ATPase, is potently inhibited by orthovanadate. Both the Ca2+-stimulated ATPase and the vanadate inhibition are enhanced by the presence of Mg2+. 4. Ca2+-stimulated ATPase activity is not responsive to calmodulin or the calmodulin antagonist trifluoperazine. 相似文献
16.
Inositol (1,4,5)trisphosphate-promoted Ca2+ release from microsomal fractions of rat liver 总被引:23,自引:0,他引:23
Crude mitochondrial fractions containing a substantial amount of microsomes accumulate Ca2+ in the presence of ATP, ruthenium red and oligomycin. A proportion of this accumulated Ca2+ is released by the addition of low concentrations (ca. 1 microM) of inositol (1,4,5) trisphosphate . Under some conditions the release is transient, and evidence is presented which suggests that this is due to inhomogeneity in the vesicle population. (1,4,5)inositol trisphosphate -induced Ca2+ release can also be demonstrated, under appropriate experimental conditions, in a more purified microsomal fraction essentially free of mitochondria. 相似文献
17.
Johannes D. Clausen Anne Nyholm Holdensen Jens Peter Andersen 《The Journal of biological chemistry》2014,289(42):29123-29134
ATP has dual roles in the reaction cycle of sarcoplasmic reticulum Ca2+-ATPase. Upon binding to the Ca2E1 state, ATP phosphorylates the enzyme, and by binding to other conformational states in a non-phosphorylating modulatory mode ATP stimulates the dephosphorylation and other partial reaction steps of the cycle, thereby ensuring a high rate of Ca2+ transport under physiological conditions. The present study elucidates the mechanism underlying the modulatory effect on dephosphorylation. In the intermediate states of dephosphorylation the A-domain residues Ser186 and Asp203 interact with Glu439 (N-domain) and Arg678 (P-domain), respectively. Single mutations to these residues abolish the stimulation of dephosphorylation by ATP. The double mutation swapping Asp203 and Arg678 rescues ATP stimulation, whereas this is not the case for the double mutation swapping Ser186 and Glu439. By taking advantage of the ability of wild type and mutant Ca2+-ATPases to form stable complexes with aluminum fluoride (E2·AlF) and beryllium fluoride (E2·BeF) as analogs of the E2·P phosphoryl transition state and E2P ground state, respectively, of the dephosphorylation reaction, the mutational effects on ATP binding to these intermediates are demonstrated. In the wild type Ca2+-ATPase, the ATP affinity of the E2·P phosphoryl transition state is higher than that of the E2P ground state, thus explaining the stimulation of dephosphorylation by nucleotide-induced transition state stabilization. We find that the Asp203-Arg678 and Ser186-Glu439 interdomain bonds are critical, because they tighten the interaction with ATP in the E2·P phosphoryl transition state. Moreover, ATP binding and the Ser186-Glu439 bond are mutually exclusive in the E2P ground state. 相似文献
18.
Kinetic properties of the Ca2+-accumulation system of a rat liver microsomal fraction. 总被引:2,自引:4,他引:2 下载免费PDF全文
A P Dawson 《The Biochemical journal》1982,206(1):73-79
1. By using Ca-EGTA buffers, the Km for Ca2+ uptake into rat liver heavy microsomes (microsomal fraction) was found to be 0.2 microM free Ca2+. 2. In the absence of oxalate, these vesicles accumulate about 20 nmol of Ca2+/mg of protein. Efflux of Ca2+ from the vesicles is much faster at pH 7.6 than at pH 6.8, but does not apparently show saturation kinetics or any stringent requirement for external ions. 3. The steady-state distribution of Ca2+ between the microsomes and the medium in the presence of ATP and the absence of oxalate is dependent on Ca2+ load. When the vesicles are loaded to 50% capacity, the external free Ca2+ concentration is 70 nM. 4. The affinity of heavy microsomes for Ca2+ is such that is seems likely that they has a dominant role in the determination of cytoplasmic free Ca2+ concentrations. 相似文献
19.
A rat liver plasma membrane fraction showed an ATP-dependent uptake of Ca2+ which was released by the ionophore A23187. This activity represents a plasma membrane component and is not due to microsomal contamination. The Ca2+ transport displayed several properties which were different from those of the high-affinity Ca2+-ATPase previously observed in these membranes (Lotersztajn et al. (1981) J. Biol. Chem. 256, 11209-11215; Birch-Machin, M.A. and Dawson, A.P. (1986) Biochim. Biophys. Acta 855, 277-285). These observations have shown that Ca2+-ATPase does not require added Mg2+ whereas we have demonstrated that, in the same membrane preparation, Ca2+ uptake required millimolar concentrations of added Mg2+. The Ca2+-ATPase has a broad specificity for the nucleotides ATP, GTP, UTP and ITP while Ca2+ uptake remains specific for ATP. Ca2+ uptake also displayed different affinities for free Ca2+ and MgATP compared to Ca2+-ATPase activity, with apparent Km values of 0.25 microM Ca2+, 0.15 mM MgATP and 1.0 microM Ca2+, 4 microM MgATP respectively. The apparent maximum rate of Ca2+ uptake was about 150-fold less than Ca2+-ATPase activity. These features suggest that the high-affinity Ca2+-ATPase is not the enzymic expression of the ATP-dependent Ca2+ transport mechanism. 相似文献
20.
The addition of nanomolar concentrations of free Fe2+, Mn2+, or Co2+ to rat liver plasma membranes resulted in an activation of ATP hydrolysis by these membranes which was not additive with the Ca2+-stimulated ATPase activity coupled to the Ca2+ pump. Detailed analysis showed that, if fact, (i) as for the stimulation of (Ca2+-Mg2+)-ATPase by Ca2+, activation of ATP hydrolysis by Fe2+, Mn3+, or Co2+ followed a cooperative mechanism involving two ions; (ii) two interacting sites for ATP were involved in the activation of both Fe2+- and Ca2+-stimulated ATPase activities; (iii) micromolar concentrations of magnesium caused the same dramatic inhibition of both activities; and (iv) the subcellular distribution of Fe2+-activated ATP hydrolysis activity corresponded to that of plasma membrane markers. This suggests that the (Ca2+-Mg2+)-ATPase might be stimulated not only by Ca2+, but also by Fe2+, Mn2+, or Co2+. However, interaction of (Ca2+-Mg2+)-ATPase with Fe2+, Mn2+, or Co2+ inhibited the Ca2+ pump activity. Furthermore, neither the formation of the phosphorylated intermediate of (Ca2+-Mg2+)-ATPase, nor ATP-dependent (59Fe) uptake could be detected in the presence of Fe2+ concentrations which stimulated ATP hydrolysis. We conclude that: (i) under the influence of certain metal ions, the Ca2+ pump in the liver plasma membrane may be switched to an uncoupled state which displays ATP hydrolysis activity, but does not insure ion transport; (ii) therefore the Ca2+ pump in liver plasma membranes specifically insures Ca2+ transport. 相似文献