首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yolk proteins of many insects, including Drosophila , are synthesised in the fat body of adult females and are transported through the haemolymph to be accumulated in the oocytes. We have used differences in the size and number of yolk polypeptides in different species of Drosophila to investigate the role of the ovary and of juvenile hormone in vitellogenesis.
The yolk proteins of eight species of Drosophila were compared with those of Drosophila melanogaster . Only Drosophila simulans had three yolk polypeptides of similar molecular weight to the three polypeptides in D. melanogaster and gave a high degree of cross reactivity with antibody raised against the yolk proteins of D. melanogaster . All other species had one to three bands on a sodium dodecyl sulphate gel representing the yolk polypeptides; they are between 44,000 and 49,500 daltons in molecular weight, showing weak cross reactivity with anti- D. melanogaster yolk antibody. Interspecies ovary transplants established that males of D. arizonensis and D.pseudoobscura which supported vitellogenesis of D. melanogaster ovaries, did so by permitting the implanted ovaries to synthesise their own yolk proteins. The synthetic juvenile hormone, ZR515, was unable to induce ovaries, which failed to develop in other species of males, to undergo vitellogenesis. In females, however, ZR515 was able to induce uptake of the yolk proteins of some of the species into the D. melanogaster donor ovaries, which had failed to develop in the absence of hormone. These interspecies differences in the yolk proteins have therefore been used to investigate the control of vitellogenesis and the role of juvenile hormone in this process in Drosophila .  相似文献   

2.
Gypsy is an endogenous retrovirus of Drosophila melanogaster. Phylogenetic studies suggest that occasional horizontal transfer events of gypsy occur between Drosophila species. gypsy possesses infective properties associated with the products of the envelope gene that might be at the origin of these interspecies transfers. We report here the existence of DNA sequences putatively encoding full-length Env proteins in the genomes of Drosophila species other than D. melanogaster, suggesting that potentially infective gypsy copies able to spread between sexually isolated species can occur. The ability of gypsy to invade the genome of a new species is conditioned by its capacity to be expressed in the naive genome. The genetic basis for the regulation of gypsy activity in D. melanogaster is now well known, and it has been assigned to an X-linked gene called flamenco. We established an experimental simulation of the invasion of the D. melanogaster genome by gypsy elements derived from other Drosophila species, which demonstrates that these non- D. melanogaster gypsy elements escape the repression exerted by the D. melanogaster flamenco gene.  相似文献   

3.
We compared male-reproductive-tract polypeptides of Drosophila melanogaster and D. simulans by using two-dimensional gel electrophoresis. Approximately 64% of male-reproductive-tract polypeptides were identical between two randomly chosen isofemale lines from these two species, compared with 83% identity for third-instar imaginal wing-disc polypeptides. Qualitatively similar differences were found between reproductive tracts and imaginal discs when D. sechellia was compared with D. melanogaster and with D. simulans. When genic polymorphism was taken into account, approximately 10% of male- reproductive-tract polypeptides were apparently fixed for different alleles between D. melanogaster and D. simulans; this proportion is the same as that found for soluble enzymes by one-dimensional gel electrophoresis. Strikingly, approximately 20% of male-reproductive- tract polypeptides of either D. melanogaster or D. simulans had no detectable homologue in the other species. We propose that proteins of the Drosophila male reproductive tract may have diverged more extensively between species than have other types of proteins and that much of this divergence may involve large changes in levels of polypeptide expression.   相似文献   

4.
5.
Genomic libraries were constructed from three Drosophila species, namely Drosophila auraria, Drosophila serrata, and Drosophila kikkawai, belonging to the Drosophila montium subgroup of the Drosophila melanogaster species group. Clones containing beta-tubulin specific sequences were isolated, characterized by restriction endonuclease digestions and Southern hybridizations, and mapped by in situ hybridization on the polytene chromosomes of the species studied. The distribution of the beta-tubulin loci was found to be similar in D. montium species and D. melanogaster.  相似文献   

6.
7.
8.
Harr B  Schlötterer C 《Genetica》2004,120(1-3):71-77
Forty-seven microsatellite loci were amplified in Drosophila melanogaster, Drosophila simulans, Drosophila mauritiana and Drosophila sechellia. The two cosmopolitan species D. melanogaster and D. simulans were found to be the most variable ones, followed by D. mauritiana and D. sechellia. A model based clustering algorithm was applied to the population samples of D. melanogaster, D. simulans and D. sechellia. No evidence for population substructure was detected within species--most likely due to insufficient power. A Markov chain Monte Carlo method developed for demographic inference based on microsatellites provided unambiguous evidence for population contraction in D. melanogaster, D. simulans and D. sechellia, despite that the D. melanogaster and D. simulans population samples were of non-African origin and represented recently expanded populations.  相似文献   

9.
The sequencing of the genomes of 12 Drosophila species has created an opportunity for much in the way of comparative molecular analyses amongst these species. To aid that endeavor, we have made several transformation vectors based on the piggyBac transposon with 3xP3-EGFP and -ECFP transgenic markers that should be useful for mutagenesis and establishing the GAL4/UAS system in these species. We have tested the ability of mini-white to be used as a marker for insertional mutagenesis, and have observed mini-white derived pigmentation of the testes sheath in a subset of lines from D. pseudoobscura and D. virilis. We have incorporated a source of piggyBac transposase into nine Drosophila species, and have demonstrated the functionality of these transposase lines for mobilization of marked inserts in vivo. Additionally, we tested the ability of a D. melanogaster nanos enhancer element to drive expression of GAL4 in D. melanogaster, D. simulans, D. erecta, D. yakuba, D. pseudoobscura, and D. virilis. The efficacy of the nos-Gal4 transgene was determined by measuring the response of UAS-EGFPtub in all six species. Our results show that D. melanogaster nos-Gal4 drives expression in other species, to varying degrees, in similar spatiotemporal domains in the ovaries, testes, and embryos as seen in D. melanogaster. However, expression levels are variable, demonstrating the possible need to use species-specific promoters in some cases. In summary, we hope to provide a set of guidelines and basic tools, based upon this work, for both insertional mutagenesis and GAL4/UAS system-based experiments in multiple species of Drosophila.  相似文献   

10.
11.
The protein synthesis pattern of a set of stage and tissue specific proteins has previously been described in Drosophila melanogaster. The analysis of this set of follicle cell proteins (Fc proteins) is here extended to cover several sibling species of Drosophila melanogaster, namely D. simulans, D. mauritiana, D. erecta and D. yakuba. Even though a similar set of proteins were synthesized in these species, minor differences in size of the proteins were found between the species. Some of the species exhibited variation within species.  相似文献   

12.
In Drosophila melanogaster and Drosophila simulans, positive Darwinian selection drives high rates of evolution of male reproductive genes, and accessory gland proteins (Acps) in particular. Here, we tested whether 13 X-linked male-specific genes, 4 Acps and 9 non-Acps, are under selective forces in the Drosophila pseudoobscura species group, much as those in the D. melanogaster group. We observed a statistically significant correlation in relative rates of nonsynonymous evolution between the two species groups tested. One Acp examined had a higher rate of nonsynonymous substitution than predicted by a neutral model in both species groups, suggesting its divergence was driven by positive Darwinian selection. To further test for the signature of selection, we examined polymorphism of three Acps within D. pseudoobscura. From this test, no Acp individually bore the signature of positive selection, but the 3 Acps together possessed an excess of nonsynonymous differences between species, relative to polymorphism within species. We conclude that faster evolution of Acps in the D. pseudoobscura group appears to be driven by positive selection, as previously suggested in the D. melanogaster group.  相似文献   

13.
14.
Drosophila focal adhesion kinase (Dfak) gene is a single-copy nuclear gene. Previous study revealed that Drosophila melanogaster and Drosophila simulans had lost an intron precisely within the tyrosine kinase (TyK) domain of this gene. However, this did not happen in several other Drosophila species, including Drosophila elegans, Drosophila ficusphila, Drosophila biarmipes, Drosophila jambulina, Drosophila prostipennis, Drosophila takahashii, and Drosophila pseudoobscura. In the current study, homologous sequences of Drosophila sechellia, Drosophila mauritiana, Drosophila yakuba, Drosophila teissieri, Drosophila santomea, and Drosophila erecta were amplified by polymerase chain reaction, and further sequencing analysis indicated that these species were missing a TyK domain intron, indicating they were closely related. The relationship of the D. melanogaster species group was reconstructed using TyK domain nucleotide sequences. The resulting phylogenetic tree revealed that these 8 species were the most related species in the melanogaster group. These results strongly support previously proposed classifications based on morphological and molecular data.  相似文献   

15.
The Drosophila melanogaster species group is a popular model for evolutionary studies due to its morphological and ecological diversity and its inclusion of the model species D. melanogaster. However, phylogenetic relationships among major lineages within this species group remain controversial. In this report, the phylogeny of 10 species representing each of the well-supported monophyletic clades in the melanogaster group was studied using the sequences of 14 loci that together comprise 9493 nucleotide positions. Combined Bayesian analysis using gene-specific substitution models produced a 100% credible set of two trees. In the strict consensus of these trees, the ananassae subgroup branches first in the melanogaster species group, followed by the montium subgroup. The remaining lineages form a monophyletic clade in which D. ficusphila and D. elegans branch first, followed by D. biarmipes, D. eugracilis, and the melanogaster subgroup. This strongly supported phylogeny resolves most basal relationships in the melanogaster species group, and provides a framework that can be extended in the future to encompass more species.  相似文献   

16.
17.
18.
19.
Circular DNA Molecules in the Genus Drosophila   总被引:1,自引:0,他引:1       下载免费PDF全文
The satellite DNA's from the embryos of five species of Drosophila (D. melanogaster, D. simulans, D. nasuta, D. virilis and D. hydei) have been analyzed for the presence of closed circular duplex DNA molecules, as determined by CsCl-EBr gradients. Circular DNA molecules were found in every species but D. melanogaster. Analyses of cell fractions from adult Drosophila and organ fractions from Drosophila larvae show that fractions containing mitochondria are highly enriched in these molecules.  相似文献   

20.
Wagstaff BJ  Begun DJ 《Genetics》2007,177(2):1023-1030
The relationship between animal mating system variation and patterns of protein polymorphism and divergence is poorly understood. Drosophila provides an excellent system for addressing this issue, as there is abundant interspecific mating system variation. For example, compared to D. melanogaster subgroup species, repleta group species have higher remating rates, delayed sexual maturity, and several other interesting differences. We previously showed that accessory gland protein genes (Acp's) of Drosophila mojavensis and D. arizonae evolve more rapidly than Acp's in the D. melanogaster subgroup and that adaptive Acp protein evolution is likely more common in D. mojavensis/D. arizonae than in D. melanogaster/D. simulans. These findings are consistent with the idea that greater postcopulatory selection results in more adaptive evolution of seminal fluid proteins in the repleta group flies. Here we report another interesting evolutionary difference between the repleta group and the D. melanogaster subgroup Acp's. Acp gene duplications are present in D. melanogaster, but their high sequence divergence indicates that the fixation rate of duplicated Acp's has been low in this lineage. Here we report that D. mojavensis and D. arizonae genomes contain several very young duplicated Acp's and that these Acp's have experienced very rapid, adaptive protein divergence. We propose that rapid remating of female desert Drosophila generates selection for continuous diversification of the male Acp complement to improve male fertilization potential. Thus, mating system variation may be associated with adaptive protein divergence as well as with duplication of Acp's in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号