首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
By using mutants of Vibrio alginolyticus with only a polar flagellum (Pof+ Laf-) or only lateral flagella (Pof- Laf+), we examined the relationship between swimming speed and the viscosity of the medium for each flagellar system. Pof+ Laf- cells could not swim in the high-viscosity environment (ca. 200 cP) in which Pof- Laf+ cells swam at 20 microns/s. The Pof- Laf+ cells swam at about 20 microns/s at normal viscosity (1 cP) without the viscous agent, and the speed increased to 40 microns/s at about 5 cP and then decreased gradually as the viscosity was increased further. These results show the functional difference between polar and lateral flagella in viscous environments.  相似文献   

2.
The number and location of bacterial flagella vary with the species. The Vibrio alginolyticus cell has a single polar flagellum, which is driven by sodium ions. We selected mutants on the basis of reduced swarming ability on soft agar plates. Among them, we found two mutants with multiple polar flagella, and named them KK148 and NMB155. In Pseudomonas species, it is known that FlhF and FleN, which are FtsY and MinD homologs, respectively, are involved in regulation of flagellar placement and number, respectively. We cloned homologous genes of V. alginolyticus, flhF and flhG. KK148 cells had a nonsense mutation in flhG; cells expressing transgenic flhG recovered the swarming ability and had a reduced number of polar flagella. NMB155 cells did not have a mutation in either flhF or flhG. In wild-type cells, expression of flhF increased the number of polar flagella; in contrast, expression of flhG reduced both the number of polar flagella and the swarming ability. These results suggest that FlhG negatively regulates the number of polar flagella in V. alginolyticus. KK148 cells expressing both flhF and flhG exhibited fewer polar flagella and better swarming ability than KK148 cells expressing flhG alone, suggesting that FlhG acts with FlhF.  相似文献   

3.
4.
The antigenicity of lateral (L-) flagella of two marine vibrios, Vibrio alginolyticus and V. harveyi, was studied, and the two species were found to have common antigenicity of their flagella. Antisera against L-flagella were prepared by immunizing rabbits with highly purified L-flagellar filaments. H-Agglutination tests with the anti-L-flagella antisera showed that four H-serovars existed in these species and that two of them were shared by the two species. Cross reactivity between H-serovars of these two species and other vibrios having lateral flagella, such as V. parahaemolyticus, V. campbellii, V. proteus, or V. fluvialis, was not observed in the H-agglutination test, although partial common antigenicity was observed in the gel diffusion test with flagellin monomers. These observations suggest that surface antigenic determinants of the lateral flagella of V. alginolyticus and V. harveyi are specific to these two species but internal antigenic determinants buried in the flagellar filaments are partially shared with other vibrio species.  相似文献   

5.
Precise regulation of the number and positioning of flagella are critical in order for the mono-polar-flagellated bacterium Vibrio alginolyticus to swim efficiently. It has been shown that, in V. alginolyticus cells, the putative GTPase FlhF determines the polar location and production of flagella, while the putative ATPase FlhG interacts with FlhF, preventing it from localizing at the pole, and thus negatively regulating the flagellar number. In fact, no ΔflhF cells have flagella, while a very small fraction of ΔflhFG cells possess peritrichous flagella. In this study, the mutants that suppress inhibition of the swarming ability of ΔflhFG cells were isolated. The mutation induced an increase in the flagellar number and, furthermore, most Vibrio cells appeared to have peritrichous flagella. The sequence of the flagella related genes was successfully determined, however, the location of the suppressor mutation could not been found. When the flhF gene was introduced into the suppressor mutant, multiple polar flagella were generated in addition to peritrichous flagella. On the other hand, introduction of the flhG gene resulted in the loss of most flagella. These results suggest that the role of FlhF is bypassed through a suppressor mutation which is not related to the flagellar genes.  相似文献   

6.
The axial length of the polar flagellum (Pof) of Vibrio alginolyticus is about 5 microm. We previously isolated mutants that make abnormally long flagella. The swarm sizes of these mutants in a soft agar plate are smaller than that of a wild-type strain. We cloned a DNA fragment into the pMF209 plasmid that restored the swarming ability of the long-Pof strain V10578. The swimming speed and flagellar length of these transformants were almost equal to the wild-type values. The amounts of PF47 flagellin and PF60 sheath-associated protein, which increased in the long-Pof mutants, were retrieved to almost the wild-type level in the transformants. The plasmid pMF209 contained only a 143 bp chromosomal fragment whose sequence is about 80% similar to that of the motX promoter region of V parahaemolyticus. We speculate that this sequence interacts with a regulatory protein that controls Pof expression. The mutation causing the long-Pof phenotype may be in the gene encoding this protein or in the control region of a structural gene that is regulated by this protein.  相似文献   

7.
The development of peritrichous flagella and, consequently, swarming of Vibrio alginolyticus depend on a complex relationship between temperature, salt concentrations and pH. At temperatures above 28 degrees C V. alginolyticus did not develop peritrichous flagella unless certain minimal concentrations of NaCl are present: the higher the temperature, the higher the NaCl concentrations required for peritrichous flagella synthesis. This requirement for NaCl at high temperatures is much more pronounced at pH 9 than at pH 6. High temperatures and low concentrations of NaCl also inhibited swarming of cells already armed with peritrichous flagella. Other cations, such as Li+, K+ and Mg2+. replaced NaCl only at temperatures below 28 degrees C.  相似文献   

8.
Vibrio parahaemolyticus synthesizes two distinct flagellar organelles, the polar flagellum (Fla), which propels the bacterium in a liquid environment (swimming), and the lateral flagella (Laf), which are responsible for movement over surfaces (swarming). Chemotactic control of each of these flagellar systems was evaluated separately by analyzing the behavioral responses of strains defective in either motility system, i.e., Fla+ Laf- (swimming only) or Fla- Laf+ (swarming only) mutants. Capillary assays, modified by using viscous solutions to measure swarming motility, were used to quantitate chemotaxis by the Fla+ Laf- or Fla- Laf+ mutants. The behavior of the mutants was very similar with respect to the attractant compounds and the concentrations which elicited responses. The effect of chemotaxis gene defects on the operation of the two flagellar systems was also examined. A locus previously shown to encode functions required for chemotactic control of the polar flagellum was cloned and mutated by transposon Tn5 insertion in Escherichia coli, and the defects in this locus, che-4 and che-5, were then transferred to the Fla+ Laf- or Fla- Laf+ strains of V. parahaemolyticus. Introduction of the che mutations into these strains prevented chemotaxis into capillary tubes and greatly diminished movement of bacteria over the surface of agar media or through semisolid media. We conclude that the two flagellar organelles, which consist of independent motor-propeller structures, are directed by a common chemosensory control system.  相似文献   

9.
Electron microscopic analysis of basal bodies of the flagella Vibrio alginolyticus revealed a structure composed of four discs. The diameters of two discs localized in the cytoplasmic membrane appeared to be twice as little as those of the other two discs. In this respect the basal body of V. alginolyticus resembles that of V. cholerae. The 5S sequence of ribosomal RNA from V. alginolyticus appeared to be similar to those of V. cholerae, V. harveyi and some other vibrios. Comparison of 5S-RNA sequence culminated in a dendrogram of evolutionary relationships of various bacterial species, suggesting that V. alginolyticus is a typical representative of the Vibrionacea family. The data obtained are discussed in terms of the role of Na+ energy metabolism in living cells.  相似文献   

10.
Factors leading to swarming of Vibrio alginolyticus cells on solid media were studied. Polar flagellated rods from liquid medium develop into small colonies on solid medium. Byproducts, accumulating in the colony area, induce at certain critical concentrations, the formation of peritrichous flagella and development of long heavily flagellated filaments which swarm away form the high by-product concentrations. Several types of nonswarming mutants were isolated, among them, mutants which lack the capacity to form swarming-inducing pyproducts, but can be induced to swarm by byproducts of other mutants incapable of swarming. Different compounds could replace the natural metabolic byproducts; at very low concentration these compounds induce peritrichous flagella and swarming in some of the nonswarming mutants mentioned above. The natural metabolic byproducts accumulating in yeast-extract-peptone medium are suggested to be volatile acids belonging to the valine and isoleucine pathway. Wild-type V. alginolyticus cells cannot swarm on certain substrates but its mutants, able to swarm on many substrates in minimal media, are easily selected.  相似文献   

11.
The attachment of Vibrio alginolyticus to glass surfaces was investigated with special reference to the swimming speed due to the polar flagellum. This bacterium has two types of flagella, i.e., one polar flagellum and numerous lateral flagella. The mutant YM4, which possesses only the polar flagellum, showed much faster attachment than the mutant YM18, which does not possess flagella, indicating that the polar flagellum plays an important role. The attachment of YM4 was dependent on Na+ concentration and was specifically inhibited by amiloride, an inhibitor of polar flagellum rotation. These results are quite similar to those for swimming speed obtained under the same conditions. Observations with other mutants showed that chemotaxis is not critical and that the flagellum does not act as an appendage for attachment. From these results, it is concluded that the attachment of V. alginolyticus to glass surfaces is dependent on swimming speed.  相似文献   

12.
In Escherichia coli, rotation of the flagellar motor has been shown to depend upon electrostatic interactions between charged residues of the stator protein MotA and the rotor protein FliG. These charged residues are conserved in the Na+-driven polar flagellum of Vibrio alginolyticus, but mutational studies in V. alginolyticus suggested that they are relatively unimportant for motor rotation. The electrostatic interactions detected in E. coli therefore might not be a general feature of flagellar motors, or, alternatively, the V. alginolyticus motor might rely on similar interactions but incorporate additional features that make it more robust against mutation. Here, we have carried out a comparative study of chimeric motors that were resident in E. coli but engineered to use V. alginolyticus stator components, rotor components, or both. Charged residues in the V. alginolyticus rotor and stator proteins were found to be essential for motor rotation when the proteins functioned in the setting of the E. coli motor. Patterns of synergism and suppression in rotor/stator double mutants indicate that the V. alginolyticus proteins interact in essentially the same way as their counterparts in E. coli. The robustness of the rotor-stator interface in V. alginolyticus is in part due to the presence of additional charged residues in PomA but appears mainly due to other factors, because an E. coli motor using both rotor and stator components from V. alginolyticus remained sensitive to mutation. Motor function in V. alginolyticus may be enhanced by the proteins MotX and MotY.  相似文献   

13.
The bacterial flagellar motor is an elaborate molecular machine that converts ion-motive force into mechanical force (rotation). One of its remarkable features is its swift switching of the rotational direction or speed upon binding of the response regulator phospho-CheY, which causes the changes in swimming that achieve chemotaxis. Vibrio alginolyticus has dual flagellar systems: the Na(+)-driven polar flagellum (Pof) and the H(+)-driven lateral flagella (Laf), which are used for swimming in liquid and swarming over surfaces respectively. Here we show that both swimming and surface-swarming of V. alginolyticus involve chemotaxis and are regulated by a single CheY species. Some of the substitutions of CheY residues conserved in various bacteria have different effects on the Pof and Laf motors, implying that CheY interacts with the two motors differently. Furthermore, analyses of tethered cells revealed that their switching modes are different: the Laf motor rotates exclusively counterclockwise and is slowed down by CheY, whereas the Pof motor turns both counterclockwise and clockwise, and CheY controls its rotational direction.  相似文献   

14.
Two types of flagella are responsible for motility in mesophilic Aeromonas strains. A polar unsheathed flagellum is expressed constitutively that allows the bacterium to swim in liquid environments and, in media where the polar flagellum is unable to propel the cell, Aeromonas express peritrichous lateral flagella. Recently, Southern blot analysis using a DNA probe based on the Aeromonas caviae Sch3N lateral flagellin gene sequence showed a good correlation between strains positive for the DNA probe, swarming motility and the presence of lateral flagella by microscopy. Here, we conclude that the easiest method for the detection of the lateral flagellin gene(s) is by PCR (polymerase chain reaction); this showed good correlation with swarming motility and the presence of lateral flagella. This was despite the high degree of DNA heterogeneity found in Aeromonas gene sequences. Furthermore, by reintroducing the laf (lateral flagella) genes into several mesophilic lateral-flagella-negative Aeromonas wild-type strains, we demonstrate that this surface structure enhances the adhesion to and invasion of HEp-2 cells and the capacity for biofilm formation in vitro. These results, together with previous data obtained using Laf- mutants, demonstrate that lateral flagella production is a pathogenic feature due to its enhancement of the interaction with eukaryotic cell surfaces.  相似文献   

15.
Vibrio parahaemolyticus possesses two alternate flagellar systems adapted for movement under different circumstances. A single polar flagellum propels the bacterium in liquid (swimming), while multiple lateral flagella move the bacterium over surfaces (swarming). Energy to rotate the polar flagellum is derived from the sodium membrane potential, whereas lateral flagella are powered by the proton motive force. Lateral flagella are arranged peritrichously, and the unsheathed filaments are polymerized from a single flagellin. The polar flagellum is synthesized constitutively, but lateral flagella are produced only under conditions in which the polar flagellum is not functional, e.g., on surfaces. This work initiates characterization of the sheathed, polar flagellum. Four genes encoding flagellins were cloned and found to map in two loci. These genes, as well as three genes encoding proteins resembling HAPs (hook-associated proteins), were sequenced. A potential consensus polar flagellar promoter was identified by using upstream sequences from seven polar genes. It resembled the enterobacterial sigma 28 consensus promoter. Three of the four flagellin genes were expressed in Escherichia coli, and expression was dependent on the product of the fliA gene encoding sigma 28. The fourth flagellin gene may be different regulated. It was not expressed in E. coli, and inspection of upstream sequence revealed a potential sigma 54 consensus promoter. Mutants with single and multiple defects in flagellin genes were constructed in order to determine assembly rules for filament polymerization. HAP mutants displayed new phenotypes, which were different from those of Salmonella typhimurium and most probably were the result of the filament being sheathed.  相似文献   

16.
Mesophilic Aeromonas strains express a single polar flagellum in all culture conditions and produce lateral flagella on solid media. Such hyperflagellated cells demonstrate increased adherence. Nine lateral flagella genes, lafA-U for Aeromonas hydrophila, and four Aeromonas caviae genes, lafA1, lafA2, lafB and fliU, were isolated. Mutant characterization, nucleotide and N-terminal sequencing demonstrated that the A. hydrophila and A. caviae lateral flagellins were almost identical, but were distinct from their polar flagellum counterparts. The aeromonad lateral flagellins exhibited higher molecular masses on SDS-PAGE, and this aberrant migration was thought to result from post-translational modification through glycosylation. Mutation of the Aeromonas lafB, lafS or both A. caviae lateral flagellins caused the loss of lateral flagella and a reduction in adherence and biofilm formation. Mutations in lafA1, lafA2, fliU or lafT resulted in strains that expressed lateral flagella, but had reduced adherence levels. Mutation of the lateral flagella loci did not affect polar flagellum synthesis, but the polarity of the transposon insertions on the A. hydrophila lafTlU genes resulted in non-motility. However, mutations that abolished polar flagellum production also inhibited lateral flagella expression. We conclude that Aeromonas lateral flagella: (i) play a role in adherence and biofilm formation; (ii) are distinct from the polar flagellum; (iii) synthesis is dependent upon the presence of a polar flagellum filament; and (iv) that the motor proteins of the polar and lateral flagella systems appear to be shared.  相似文献   

17.
Three A. brasilense strains (S27, SpBr14, and KR77) did not hydrolyze the chromogenic substrate of alkaline phosphatase (PhoA), X-phosphate, in situ, and were used as recipients in experiments on TnphoA mutagenesis. KMR transconjugates were obtained only for A. brasilense S27, 85% of them were also PhoA+. About 12% TnphoA mutants of A. brasilense S27 had reduces capacity to swarming and 3% of mutants neither swam nor swarmed. These totally immotile clones were examined under transmission electron microscope and were classified as Fla-Laf-, Fla-leakyLaf-, and Fla-Laf+ mutants. In Fla-Laf+ TnphoA mutants of S27, the expression of their lateral flagella (Laf) retained the wild-type inducibility. The presence of intact polar flagellum (Fla) did not seem to be obligatory for controllable expression of Laf in A. brasilense S27. The data suggest that A. brasilense S27 Fla and Laf systems have common structural and/or regulatory components. The PhoA+ phenotype of S27 Fla- mutants suggested a periplasmic and/or membrane localization of the hybrid proteins, the formation of which blocks the flagellar assembly or functioning. Immunochemical analysis with antibodies to alkaline phosphatase will identify these proteins.  相似文献   

18.
Rhodospirillum centenum is a purple photosynthetic bacterium that is capable of differentiating from vibrioid swimming cells that contain a single polar flagellum into rod-shaped swarming cells that have a polar flagellum plus numerous lateral flagella. Microscopic studies have demonstrated that the polar flagellum is constitutively present and that the lateral flagella are found only when the cells are grown on solidified or viscous medium. In this study, we demonstrated that R. centenum contains two sets of motor and switch genes, one set for the lateral flagella and the other for the polar flagellum. Electron microscopic analysis indicated that polar and lateral flagellum-specific FliG, FliM, and FliN switch proteins are necessary for assembly of the respective flagella. In contrast, separate polar and lateral MotA and MotB motor subunits are shown to be required for motility but are not needed for the synthesis of polar and lateral flagella. Phylogenetic analysis indicates that the polar and lateral FliG, FliM, and FliN switch proteins are closely related and most likely arose as a gene duplication event. However, phylogenetic analysis of the MotA and MotB motor subunits suggests that the polar flagellum may have obtained a set of motor genes through a lateral transfer event.  相似文献   

19.
Bacteria Azospirillum brasilense have mixed flagellation: in addition to the polar flagellum, numerous lateral flagella are formed on their cells on medium with increased density. Flagella determine the active swimming and swarming capacities of azospirilla. Using A. brasilense Sp245 as an example, it was shown that the Omegon-Km artificial transposon insertion into the chromosomal gene for 3-hydroxyisobutyrate dehydrogenase (mmsB) was concurrent with the appearance of significant defects in the formation of polar flagella and with the paralysis of lateral flagella. The Sp245 mutant with the Omegon insertion into the plasmid AZOBR-p1-borne gene for 3-oxoacyl-[acyl-carrier protein]-reductase (fabG) showed the complete loss of flagella and the swarming capacity, as well as significant defects in polar flagellar assembly (though some cells are still motile in liquid medium). The viability of the A. brasilense Sp245 mutants with the Omegon insertion into the mmsB or fabG gene was not reduced. No considerable differences in the fatty acid composition of whole cell lipid extracts were found for the A. brasilense Sp245 strain and its mmsB and fabG mutants.  相似文献   

20.
Vibrio alginolyticus strains recently isolated from Dutch coastal seawater changed flagellar organization when cultivated in the presence of certain chemical agents. On agar media with more than 4.0% (w/v) NaCl the number of lateral flagella per cell decreased with increasing salt concentration. Both on agar media and in broth cultures with 6.0–9.0% (w/v) NaCl, cells with polar tufts of 2–4 sheathed or unsheathed flagella were frequently found. Cells grown on agar media with 7.3–9.8% (w/v) Na2SO4 had drastically reduced numbers of lateral flagella, but lacked polar tufts. EDTA suppressed growth, but did not affect flagellar arrangement. In the presence of 0.1–0.3% boric acid or 0.05–0.1% aluminium hydroxide, cells in liquid media tended to produce lateral, in addition to the polar flagella normally observed in broth cultures. Of a number of surface-active agents tested, Tween 80 and Na-taurocholate, even in high concentrations, did not affect flagellation. Bile salts (0.1%) and Na-deoxycholate (0.05%) strongly reduced the number of both polar and lateral flagella. In agar cultures, Na-lauryl sulphate (0.01–0.1%) inhibited the formation of lateral, but increased the incidence of polar flagella. Teepol (0.05–0.2%) had a similar effect and also it had a deteriorating effect on the sheaths of the polar flagella. Concomitant with the reduction in the number of lateral flagella, induced by these agents, swarming on agar media was inhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号