首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 519 毫秒
1.
We previously found hydroperoxide-responsive proteins (HPRPs), which are comprised of peroxiredoxin I(Prx I), Prx II, Prx III, Prx VI, HSP27, G3PDH and two unidentified proteins (HPRP-2' and HPRP-5'), in human umbilical vein endothelial cells. It was demonstrated by two-dimensional polyacrylamide gel electrophoresis (2D PAGE) that most HPRPs are converted into variants with lower pI upon exposure to hydroperoxides. In this study, we examined the HPRP response on 2D gels upon exposure of human endothelial cells (ECV304) to paraquat (PQ2+), which generates reactive oxygen species (ROS) within cells. PQ2+ exerted cytotoxic effects in a dose- (10μM-10mM) and time- (24-168h) dependent manner. Two-dimensional PAGE analysis revealed that HPRP-2', and oxidized forms of Prx I, Prx II and Prx III were clearly increased upon exposure of cells to sublethal levels of PQ2+. Microsequence analysis revealed that both HPRP-2 and -2' were identical with human DJ-1. Moreover immunoblot analysis confirmed the increase of oxidized forms of Prx II, Prx III and DJ-1 in response to sublethal levels of PQ2+. PQ2+ treatment failed to increase fluorescence intensity derived from DCF, which is believed to be an indicator for intracellular levels of hydroperoxide. Although pentachlorophenol (PCP), an uncoupler of the mitochondrial respiratory chain, clearly elevated the fluorescence, PCP had no effect on HPRP response. These observations indicated that DCF-derived fluorescence is not correlated with HPRP response. We consider that the response of Prxs and DJ-1 on 2D gels could reflect endogenous production of ROS in PQ2+-treated cells, and might be a sensitive indicator of oxidative stress status.  相似文献   

2.
Thioredoxin peroxidase (TPx), also named peroxiredoxin (Prx), is an important peroxidase, which can protect organisms against various oxidative stresses. Two TPxs were isolated from a disk abalone (Haliotis discus discus) cDNA library, named as AbTPx1 and AbTPx2, respectively. AbTPx1 and AbTPx2 consist of 1315 and 1045 bp full-length cDNA with 753 and 597 bp open reading frames encoding 251 and 199 amino acids, respectively. The TPx signature motif 1 (FYPLDFTFVCPTEI) and motif 2 (GEVCPA) were conserved in both AbTPx1 and AbTPx2 amino acid sequences. Purified recombinant abalone TPx fusion proteins catalyzed the reduction of H2O2 and butyl hydroperoxide in peroxidase assays. Furthermore, both AbTPx fusion proteins were shown to protect super-coiled DNA from damage by metal-catalyzed oxidation (MCO) in vitro. Escherichia coli cells transformed with AbTPx1 and AbTPx2 coding sequences in pMAL-c2x showed resistance to H2O2 at 0.8 mM concentration by in vivo H2O2 tolerance assay. AbTPx1 and AbTPx2 mRNA were constitutively expressed in gill, mantle, abductor muscle and digestive tract in a tissue specific manner. Additionally, both TPxs mRNA were up-regulated in gill and digestive tract tissues against H2O2 at 3h post injection. The results indicate that AbTPx1 and AbTPx2 gene expressions are induced by oxidative stress and their respective proteins function in the detoxification of different ROS molecules to maintain efficient antioxidant defense in disk abalone.  相似文献   

3.
4.
5.
Drug resistance and virulence of Mycobacterium tuberculosis are in part related to the pathogen's antioxidant defense systems. KatG(-) strains are resistant to the first line tuberculostatic isoniazid but need to compensate their catalase deficiency by alternative peroxidase systems to stay virulent. So far, only NADH-driven and AhpD-mediated hydroperoxide reduction by AhpC has been implicated as such virulence-determining mechanism. We here report on two novel pathways which underscore the importance of the thioredoxin system for antioxidant defense in M. tuberculosis: (i) NADPH-driven hydroperoxide reduction by AhpC that is mediated by thioredoxin reductase and thioredoxin C and (ii) hydroperoxide reduction by the atypical peroxiredoxin TPx that equally depends on thioredoxin reductase but can use both, thioredoxin B and C. Kinetic analyses with different hydroperoxides including peroxynitrite qualify the redox cascade comprising thioredoxin reductase, thioredoxin C, and TPx as the most efficient system to protect M. tuberculosis against oxidative and nitrosative stress in situ.  相似文献   

6.
The synthesis of 40 polypeptides in mitochondria was found to be stimulated after transient exposure of human endothelial cells to sublethal levels of hydroperoxides, such as H(2)O(2), using comparative two-dimensional polyacrylamide gel electrophoresis. Eleven proteins were identified; these include 60 kDa heat shock protein (HSP60), a mitochondrial type of 70 kDa HSP (mtHSP70), manganese-dependent superoxide dismutase (MnSOD), three metabolic enzymes in citric acid cycle, two components for respiratory chain complexes, a ribosomal protein for translation in mitochondria (RM12), and an unnamed protein. These proteins are involved in reduction-oxidation and protein biogenesis, suggesting that their synthesis, which is triggered under oxidative stress conditions, is aimed at playing a defensive role in mitochondria. Moreover, mtHSP70, HSP60, MnSOD, and RM12 were revealed as their respective precursor proteins with mitochondrial targeting sequences. The preproteins of HSP60 and mtHSP70 were transiently accumulated in mitochondria after the removal of H(2)O(2) in a processing competent state, while the accumulated preprotein of MnSOD localized inside mitochondria and remained unchanged. Membrane potential of mitochondria and cellular ATP levels were unchanged under these conditions. Taken together, these results suggest that hydroperoxide stress leads to preprotein accumulation, possibly due to the impairment of the protein-processing system in mitochondria, independent of membrane potential dissipation and ATP depletion.  相似文献   

7.
8.
Peroxiredoxin-2 (Prx2), a typical two-cysteine peroxiredoxin, is the third most abundant protein in red cells. Although progress has been made in the functional characterization of Prx2, its role in red cell membrane protein homeostasis is still under investigation. Here, we studied Prx2−/− mouse red cells. The absence of Prx2 promotes (i) activation of the oxidative-induced Syk pathway; (ii) increased band 3 Tyr phosphorylation, with clustered band 3; and (iii) increased heat shock protein (HSP27 and HSP70) membrane translocation. This was associated with enhanced in vitro erythrophagocytosis of Prx2−/− red cells and reduced Prx2−/− red cell survival, indicating the possible role of Prx2 membrane recruitment in red cell aging and in the clearance of oxidized hemoglobin and damaged proteins through microparticles. Indeed, we observed an increased release of microparticles from Prx2−/− mouse red cells. The mass spectrometric analysis of erythroid microparticles found hemoglobin chains, membrane proteins, and HSPs. To test these findings, we treated Prx2−/− mice with antioxidants in vivo. We observed that N-acetylcysteine reduced (i) Syk activation, (ii) band 3 clusterization, (iii) HSP27 membrane association, and (iv) erythroid microparticle release, resulting in increased Prx2−/− mouse red cell survival. Thus, we propose that Prx2 may play a cytoprotective role in red cell membrane protein homeostasis and senescence.  相似文献   

9.
10.
ATP has been shown to mediate stress responses in the brain. The present study examined the ATP-stimulated stress protein expression of RBA-2 type-2 astrocytes. Our results revealed that ATP stimulated HSP60 expression in a dose- and time-dependent manner. The stimulation requires a minimal ATP concentration of 500 microM and high concentration of extracellular ATP (1 mM) stimulated a significant increase of HSP60 expression from 2 to 24 h. In addition, the ATP-stimulated HSP60 expressions were inhibited by inhibitors for protein kinase C (PKC) and phospholipase D (PLD), and by antioxidants, resveratrol, and catalase. Furthermore, ATP stimulated the expression of Cu/Zn superoxide dismutase (SOD). In addition, ATP and P2X7 receptor selective agonist BzATP also decreased mitochondria membrane potential measured by flow cytometry. To further examine the proteins involving in ATP-mediated stress responses, we conducted proteomic analysis. We found that RBA-2 astrocytes possess abundant peroxiredoxin II (Prx II), an antioxidant enzyme. ATP and exogenous H2O2 stimulated Prx II shifting from oxidized form to reduced form. Thus, we concluded that ATP potentiated the expression of HSP60 and Cu/Zn SOD, and decreased mitochondria membrane potential. In addition, RBA-2 astrocytes expressed Prx II that might also serve as a protective mechanism to control the concentration of reactive oxygen species.  相似文献   

11.
12.
Toxicity to o-sec-butylphenyl methylcarbamate compound (BPMC) was analyzed in the rice brown planthopper, Nilaparvata lugens, using a differential proteomics approach of identifying proteins on two dimensional-polyacrylamide gel electrophoresis (2D-PAGE). Proteome analysis from BPMC-treated brown planthopper resulted in the modulation of 22 proteins at the expression level as compared to control samples on coomassie brilliant blue (CBB) stained gels. Out of total 22 proteins, 10 proteins showed elevated expression, eight proteins showed decreased expression and four proteins showed specific expression after insecticide treatment. The N-terminal sequences of seven out of 22 proteins were determined by a gas-phase protein sequencer. The internal amino acid sequences of the 15 proteins were determined by the sequence analyses of peptides obtained by Cleveland peptide mapping method and were compared with those of the known proteins available in public databases and the EST database of the brown planthopper in our laboratory to understand the nature of the proteins. Sequence analyses revealed that the expression of putative serine/threonine protein kinase, paramyosin, HSP 90, beta-tubulin, calreticulin, ATP synthase, actin and tropomyosin was elevated, and that of beta-mitochondrial processing peptidase, dihydrolipoamide dehydrogenase, enolase and acyl-coA dehydrogenase was reduced due to the exposure of BPMC. The differential expression of these proteins reflects the overall change in cellular structure and metabolism after insecticide treatment.  相似文献   

13.
Reaction of radicals in the presence of O2, or singlet oxygen, with some amino acids, peptides, and proteins yields hydroperoxides. These species are key intermediates in chain reactions and protein damage. They can be detected in cells and are poorly removed by enzymatic defenses. Previously we have shown that peptide and protein hydroperoxides react rapidly with thiols, with this resulting in inactivation of some thiol-dependent enzymes. In light of these data, we hypothesized that inactivation of protein tyrosine phosphatases (PTPs), by hydroperoxides present on oxidized proteins, may contribute to cellular and tissue dysfunction by modulation of phosphorylation-dependent cell signaling. We show here that PTPs in cell lysates, and purified PTP-1B, are inactivated by amino acid, peptide, and protein hydroperoxides in a concentration- and structure-dependent manner. Protein hydroperoxides are particularly effective, with inhibition occurring with greater efficacy than with H2O2. Inactivation involves reaction of the hydroperoxide with the conserved active-site Cys residue of the PTPs, as evidenced by hydroperoxide consumption measurements and a diminution of this effect on blocking the Cys residue. This inhibition of PTPs, by oxidized proteins containing hydroperoxide groups, may contribute to cellular dysfunction and altered redox signaling in systems subject to oxidative stress.  相似文献   

14.
Peroxiredoxins are ubiquitously expressed proteins that reduce hydroperoxides using disulfur-reducing compounds as electron donors. Peroxiredoxins (Prxs) have been classified in two groups dependent on the presence of either one (1-Cys Prx) or two (2-Cys Prx) conserved cysteine residues. Moreover, 2-Cys Prxs, also named thioredoxin peroxidases, have peroxide reductase activity with the use of thioredoxin as biological electron donor. However, the biological reducing agent for the 1-Cys Prx has not yet been identified. We report here the characterization of a 1-Cys Prx from yeast Saccharomyces cerevisiae that we have named Prx1p. Prx1p is located in mitochondria, and it is overexpressed when cells use the respiratory pathway, as well as in response to oxidative stress conditions. We show also that Prx1p has peroxide reductase activity in vitro using the yeast mitochondrial thioredoxin system as electron donor. In addition, a mutated form of Prx1p containing the absolutely conserved cysteine as the only cysteine residue also shows thioredoxin-dependent peroxide reductase activity. This is the first example of 1-Cys Prx that has thioredoxin peroxidase activity. Finally, exposure of null Prx1p mutant cells to oxidant conditions reveals an important role of the mitochondrial 1-Cys Prx in protection against oxidative stress.  相似文献   

15.
Barley 2-cysteine peroxiredoxin (2-Cys Prx) was analyzed for peroxide reduction, quaternary structure, thylakoid attachment, and function as well as in vivo occurrence of the inactivated form, with emphasis on the role of specific amino acid residues. Data presented show the following. 1) 2-Cys Prx has a broad substrate specificity and reduces even complex lipid peroxides such as phosphatidylcholine dilineoyl hydroperoxide, although at low rates. 2) 2-Cys Prx partly becomes irreversibly oxidized by peroxide substrates during the catalytic cycle in a concentration-dependent manner, particularly by bulky hydroperoxides. 3) Using dithiothreitol and thioredoxin (Trx) as reductants, amino acids were identified that are important for peroxide reduction (Cys64, Arg140, and Arg163), regeneration by Trx (Cys185), and conformation changes from dimer to oligomer (Thr66, Trp99, and Trp189). 4) Oligomerization decreased the rate of Trx-dependent peroxide detoxification. 5) Comparison of PrxWT, W99L, and W189L using static and time-resolved LIF techniques demonstrated the contributions of the tryptophan residues and yielded information about their local environment. Data indicated protein dynamics in the catalytic site and the carboxyl terminus during the reduction-oxidation cycle. 6) Reduced and inactivated barley 2-Cys Prx oligomerized and attached to the thylakoid membrane in isolated chloroplasts. The in vivo relevance of inactivation was shown in leaves subjected to cold and wilting stress and during senescence. Based on these results, it is hypothesized that in addition to its function in peroxide detoxification, 2-Cys Prx may play a role as a structural redox sensor in chloroplasts.  相似文献   

16.
The function of peroxiredoxins in plant organelle redox metabolism   总被引:1,自引:0,他引:1  
In 1996, cDNA sequences referred to as plant peroxiredoxins (Prx), i.e. a 1-Cys Prx and a 2-Cys Prx, were reported from barley. Ten years of research have advanced our understanding of plant Prx as thiol-based peroxide reductases with a broad substrate specificity, ranging from hydrogen peroxide to alkyl hydroperoxides and peroxinitrite. Prx have several features in common. (i) They are abundant proteins that are routinely detected in proteomics approaches. (ii) They interact with proteins such as glutaredoxins, thioredoxins, and cyclophilins as reductants, but also non-dithiol-disulphide exchange proteins. By work with transgenic plants, their activity was shown to (iii) affect metabolic integrity, (iv) protect DNA from damage in vitro and as shown here in vivo, and (v) modulate intracellular signalling related to reactive oxygen species and reactive nitrogen species. (vi) In all organisms Prx are encoded by small gene families that are of particular complexity in higher plants. A comparison of the Prx gene families in rice and Arabidopsis thaliana supports previous suggestions on Prx function in specific subcellular and metabolic context. (vii) Prx gene expression and activity are subjected to complex regulation realized by an integration of various signalling pathways. 2-Cys Prx expression depends on redox signals, abscisic acid, and protein kinase cascades. Besides these general properties, the chloroplast Prx have acquired specific roles in the context of photosynthesis. The thioredoxin-dependent peroxidase activity can be measured in crude plant extracts and contributes significantly to the overall H(2)O(2) detoxification capacity. Thus organellar Prx proteins enable an alternative water-water cycle for detoxification of photochemically produced H(2)O(2), which acts independently from the ascorbate-dependent Asada-Halliwell-Foyer cycle. 2-Cys Prx and Prx Q associate with thylakoid membrane components. The mitochondrial PrxII F is essential for root growth under stress. Following a more general introduction, the paper summarizes present knowledge on plant organellar Prx, addressing Prx in signalling, and also suggests some lines for future research.  相似文献   

17.
Heat shock induces in cells the synthesis of specific proteins called heat shock proteins (HSPs) and a transient state of thermotolerance. The putative role of one of the HSPs, HSP27, as a protective molecule during thermal stress has been directly assessed by measuring the resistance to hyperthermia of Chinese hamster and mouse cells transfected with the human HSP27 gene contained in plasmid pHS2711. One- and two-dimensional gel electrophoresis of [3H]leucine- and [32P]orthophosphate-labeled proteins, coupled with immunological analysis using Ha27Ab and Hu27Ab, two rabbit antisera that specifically recognize the hamster and the human HSP27 protein respectively, were used to monitor expression and inducibility of the transfected and endogenous proteins. The human HSP27 gene cloned in pHS2711 is constitutively expressed in rodent cells, resulting in accumulation of the human HSP27 and all phosphorylated derivatives. No modification of the basal or heat-induced expression of endogenous HSPs is detected. The presence of additional HSP27 protein provides immediate protection against heat shock administered 48 h after transfection and confers a permanent thermoresistant phenotype to stable transfectant Chinese hamster and mouse cell lines. Mild heat treatment of the transfected cells results in an induction of the full complement of the endogenous heat shock proteins and a small increase in thermoresistance, but the level attained did not surpass that of heat-induced thermotolerant control cells. These results indicate that elevated levels of HSP27 is sufficient to give protection from thermal killing. It is concluded that HSP27 plays a major role in the increased thermal resistance acquired by cells after exposure to HSP inducers.  相似文献   

18.
Cellular mechanisms underlying the expression of stress proteins (HSP) were studied in the human cell-line A549 submitted to a pollutant, cadmium, in the presence of several agents which modulate the glutathione level and, supposedly, the effects of this metal in the cell. It was observed that HSP 90, HSP 72 and HSP 27 are significantly over-expressed after exposure to cadmium chloride for 24 h. Low cadmium concentrations (i.e. from 1 to 10 microM) also triggered a slight accumulation of glutathione, whereas this compound was depleted after exposure to higher cadmium concentrations (25-100 microM). When 50 microM diethyl-maleate, which traps glutathione, was added together with cadmium, the over-expression of HSP 72 and HSP 90 was much stronger. Treatment of cells with 20 or 40 mM N-acetyl-L-cysteine, which traps free radicals, was found to increase by 30% the glutathione level and to suppress the HSP over-expression. From our results, it is suggested that HSP induction by cadmium in A549 cells is due, at least in part, to the oxidative stress consisting in formation of reactive oxygen species and inhibition of peroxides detoxification. Due to this oxidative status within the cell, more proteins would be damaged inducing the HSP over-expression.  相似文献   

19.
The comparative characterization of thermal stability of human peroxiredoxins 1–6 (Prx1–Prx6) has been performed by physicochemical and biochemical methods and the role of disulfide bonds in stabilizing their structure has been shown. Prx1 and Prx2 among the tested peroxiredoxins exhibit the highest peroxidase activity and thermal stability. Prx1 and Prx2 are more than 2 times more active on average with H2O2 and tert-butyl hydroperoxide as substrates compared to other peroxiredoxins and retain at least 50% activity after 30 min heating at a temperature of 64°C, which is more than 10°C higher compared to Prx3–Prx6. The reduction of the disulfide bonds between Prx1 and Prx2 leads to a decrease of their thermal stability, comparable to the thermal stability of Prx3–Prx6, which confirms the important role of the intermolecular S–S bonds in stabilizing the structure of these proteins.  相似文献   

20.
Peroxiredoxin 1 (Prx 1), also known as natural killer enhancing factor A (NKEF A), has been implicated in the immune response of both mammals and fish. Amoebic gill disease (AGD), caused by Neoparamoeba perurans, is a significant problem for the Atlantic salmon (Salmo salar L.) aquaculture industry based in Tasmania, Australia. Here we have cloned and functionally characterized a Prx 1 open reading frame (ORF) from Atlantic salmon liver and shown that Prx 1 gene expression was down-regulated in the gills of Atlantic salmon displaying symptoms of AGD. The Prx 1 ORF encoded all of the residues and motifs characteristic of typical 2-Cys Prx proteins from eukaryotes and the recombinant protein expressed in Escherichia coli catalyzed thioredoxin (Trx)-dependent reduction of H(2)O(2), cumene hydroperoxide (CuOOH) and t-butyl hydroperoxide (t-bOOH) with K(m) values of 122, 77 and 91 μM, respectively, confirming that it was a genuine 2-Cys Prx. The recombinant protein also displayed a double displacement reaction mechanism and a catalytic efficiency (k(cat)/K(m)) with H(2)O(2) of 1.5 × 10(5) M(-1) s(-1) which was consistent with previous reports for the 2-Cys Prx family of proteins. This is the first time that a Prx 1 protein has been functionally characterized from any fish species and it paves the way for further investigation of this important 2-Cys Prx family member in fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号