首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the effects of a weak permanent magnetic field (PMF) with strength of 403 A/m on the composition and content of polar and neutral lipids and the composition of their fatty acids (FAs). The lipids were isolated from the third, fourth, and fifth leaves of onion (Allium cepa L., cv. Arzamasskii) plants, and their composition was determined using TLC and GLC techniques. Plants growth under the conditions of a natural geomagnetic field served as a control. Most intense changes in the lipid content induced by PMF were observed in the fourth onion leaf. The content of total lipids and that of polar lipids (glyco-and phospholipids) changed, whereas the content of neutral lipids either decreased or remained unchanged. The phospholipid/sterol ratio increased, causing an increase in the fluidity of the membrane lipid bilayer. PMF induced an increase in the concentration of linolenic acid and the relative content of total unsaturated FAs. The effects of PMF on the content and composition of lipids in the third and fifth onion leaves were less pronounced, demonstrating differences between the leaves of various ages in their sensitivity to the effects of magnetic field. It is concluded that changes in the weak PMF within the limits of changes in the strength of geomagnetic field in the course of evolution can affect biochemical and physiological processes of plants.  相似文献   

2.
M. Ashraf 《Plant and Soil》1989,119(2):205-210
The physiological basis of salt tolerance of two cultivars of blackgram, cv Candhari Mash (relatively salt tolerant) and cv Mash 654 (salt sensitive), was assessed in salinized sand culture at the flowering stage. Increasing NaCl concentration in the rooting medium significantly reduced the chlorophyll a, chlorophyll b, and total chlorophyll, leaf water potential (Ψw), leaf solute potential (Ψs), and leaf turgor potential (Ψp) in both the cultivars. Leaf protein and proline content was increased as a result of increasing salt concentration in both cultivars. High salt concentrations had no significant effect on the seed protein content of both cultivars. At high salinities, cv Candhari Mash had significantly greater chlorophyll a, chlorophyll b and total chlorophyll, leaf water potential, solute potential, and turgor potential than cv Mash 654, but the latter had greater leaf proline content than cv Candhari Mash. Cultivars did not differ significantly for both leaf and seed protein contents. The relatively salt tolerant cv Candhari Mash maintained high leaf water potential and turgor potential to resist salt injury. Leaf proline content had negative correlation with salt tolerance in blackgram.  相似文献   

3.
Plant β-glucosidases catalyze the hydrolysis of glycosidic linkages and play a vital role in defense against pathogens and stress. The present work investigated the relationship between leaf development and β-glucosidase protein content in Olea europea L. (cv. Picual) leaves. The total chlorophyll content increased with leaf age in current-season leaves. Immunoblot analysis revealed that the content of 61 kD protein of β-glucosidase also increased with leaf age, and that the enzyme existed in three isoforms (pI 5.8–6.2). Statistical analysis indicated a strong correlation between chlorophyll and β-glucosidase protein contents.  相似文献   

4.
Recent studies of transgenic poplars over‐expressing the genes gsh1 and gsh2 encoding γ‐glutamylcysteine synthetase (γ‐ECS) and glutathione synthetase, respectively, provided detailed information on regulation of GSH synthesis, enzymes activities and mRNA expression. In this experiment, we studied quantitative parameters of leaves, assimilating tissues, cells and chloroplasts, mesophyll resistance for CO2 diffusion, chlorophyll and carbohydrate content in wild‐type poplar and transgenic plants over‐expressing gsh1 in the cytosol after 3 years of growth in relatively clean (control) or heavy metal‐contaminated soil in the field. Over‐expression of gsh1 in the cytosol led to a twofold increase of intrafoliar GSH concentration and influenced the photosynthetic apparatus at different levels of organisation, i.e., leaves, photosynthetic cells and chloroplasts. At the control site, transgenic poplars had a twofold smaller total leaf area per plant and a 1.6‐fold leaf area per leaf compared to wild‐type controls. Annual aboveground biomass gain was reduced by 50% in the transgenic plants. The reduction of leaf area of the transformants was accompanied by a significant decline in total cell number per leaf, indicating suppression of cell division. Over‐expression of γ‐ECS in the cytosol also caused changes in mesophyll structure, i.e., a 20% decrease in cell and chloroplast number per leaf area, but also an enhanced volume share of chloroplasts and intercellular airspaces in the leaves. Transgenic and wild poplars did not exhibit differences in chlorophyll and carotenoid content of leaves, but transformants had 1.3‐fold fewer soluble carbohydrates. Cultivation on contaminated soil caused a reduction of palisade cell volume and chloroplast number, both per cell and leaf area, in wild‐type plants but not in transformants. Biomass accumulation of wild‐type poplars decreased in contaminated soil by more than 30‐fold, whereas transformants showed a twofold decrease compared to the control site. Thus, poplars over‐expressing γ‐ECS in the cytosol were more tolerant to heavy metal stress under field conditions than wild‐type plants according to the parameters analysed. Correlation analysis revealed strong dependence of cell number per leaf area unit, chloroplast parameters and mesophyll resistance with the GSH level in poplar leaves.  相似文献   

5.
Chimeral plants with variegated leaf blades were obtained by induction of organogenesis in primocultures of leaf explants ofNicotiana tabacum L. cv. Burley 49, chlorophyll mutation White Seedling. Only green plants regenerated from primocultures of explants taken from dark green leaf areas of the chimeras. The possibility of a multicellular initiation of chimera regeneration from tissue cultures is discussed.  相似文献   

6.
In a 2-year study, fruiting plants of strawberry (Fragaria × ananassa Duch.) cv. ‘Korona’ and ‘Elsanta’ were exposed for 2 months to 78 ppb ozone on average or filtered air without ozone in controlled environment chambers. Plant growth, photosynthesis, carbohydrate accumulation, and macronutrient concentrations were investigated in order to demonstrate cultivar-specific differences in the ozone sensitivity of ‘Korona’ and ‘Elsanta’ on the whole plant level. Moreover, the hypothesis was tested whether properties of the root system in strawberry were involved in ozone tolerance, for example, the roots’ ability to store or make available carbohydrates and their capacity to secure plants’ supply with nitrogen during a stress situation. In strawberry, ozone reduced leaf area by reducing leaf number. Moreover, specific leaf area (SLA) and relative leaf water content were reduced. Net photosynthesis was only slightly impaired, but activity of Rubisco and chlorophyll content in older leaves of cv. ‘Elsanta’ were significantly reduced. The most important, indirect impairment of photosynthesis was the reduction of plants’ total leaf area, which resulted in a decrease in plant biomass. The reduction of root biomass, the root/shoot ratio, and also the distribution of carbohydrates indicated a partitioning priority of the shoot at expense of the root system. Cultivar ‘Elsanta’ was characterized by significantly lower carbohydrate levels in ozone-exposed leaves, whereas levels remained fairly stable in ‘Korona’ leaves. In addition, nitrogen concentrations in leaves and roots decreased significantly in ‘Elsanta’, not in ‘Korona’. The reduced nitrogen concentration in leaves may be related with the more distinct reduction in Rubisco activity and chlorophyll content in older leaves of ‘Elsanta’.  相似文献   

7.
Abstract

The role of abscisic acid (ABA) was analyzed in roots and leaves of the halophyte Prosopis strombulifera in response to low osmotic potential (Ψo: ?1.0, ?1.9, and ?2.6?MPa) induced by sodium chloride (NaCl), sodium sulfate (Na2SO4), and the iso-osmotic combination of both compounds (NaCl?+?Na2SO4). P. strombulifera plants were sprayed with ABA, as well as with inhibitors of ABA biosynthesis (sodium tungstate and fluridone). Different parameters were measured, including total plant height, leaf number, root length, root and shoot biomass, water content, transpiration rate, and total soluble carbohydrates, specific carbohydrates and ABA concentrations. Results showed that sodium salts affected growth parameters in varying ways, depending on the type of salts used as well as the osmotic potentials. ABA-sprayed plants displayed the lowest transpiration values. These plants had a higher content of total soluble carbohydrates in roots, greater root biomass and length and increased root/shoot rate. This study shows that ABA triggers different biochemical and physiological responses after the perception of a stressful condition, and that the interaction between different concentrations and types of salts, and the addition of ABA or its inhibitors generates responses that affect development and growth in the halophyte P. strombulifera.  相似文献   

8.
The grapevine (Vitis vinifera L. cv. Riesling) plants subjected to water deficit were studied for changes in relative water content (RWC), leaf dry mass, contents of chlorophyll (Chl), total leaf proteins, free amino acids, and proline, and activities of ribulose-1,5-bisphosphate carboxylase (RuBPC), nitrate reductase (NR), and protease. In water-stressed plants RWC, leaf dry matter, Chl content, net photosynthetic rate (P N), and RuBPC and NR activities were significantly decreased. The total leaf protein content also declined with increase in the accumulation of free amino acids. Concurrently, the protease activity in the tissues was also increased. A significant two-fold increase in proline content was recorded.  相似文献   

9.
以薄壳山核桃品种‘马罕’(Caryaillinoensis‘Mahan’)的5年生嫁接苗为实验材料,研究枝条短截(1/4、1/3和1/2短截)以及枝条和主干的环剥和环割对其枝条生长及枝条和叶片中碳氮代谢物积累的影响。结果显示:经不同程度短截处理后,枝条萌芽率均显著高于对照(未经任何修剪),新枝的数量、长度和直径也均不同程度高于对照,而比叶质量及叶绿素含量总体上与对照无显著差异;经1/2和1/3短截处理后,长度0-10cm和30cm以上的新枝比例明显提高;枝条和叶片中可溶性糖含量和C/N比均高于对照、全N含量均低于对照,枝条中淀粉含量低于对照而叶片中淀粉含量高于对照。经枝条环剥和环割处理后,枝条萌芽率和比叶质量均高于对照但无显著差异,枝条平均长度增长量和叶绿素含量均显著低于对照、枝条平均直径增长量均显著高于对照;枝条和叶片中可溶性糖和淀粉含量以及C/N比均高于对照,全N含量均低于对照。经主干环剥和环割处理后,枝条的萌芽率和平均直径增长量以及比叶质量均显著高于对照,枝条平均长度增长量和叶绿素含量均显著低于对照;枝条和叶片中可溶性糖和淀粉含量以及C/N比均高于对照,枝条中全N含量高于对照而叶片中全N含量则低于对照。此外,品种‘马罕’的结果枝长度为0-30cm,其中长度0-10cm的结果枝数量最多。研究结果表明:不同短截措施均能提高薄壳山核桃的萌芽率、促进新枝伸长和增粗;而枝条和主干的环剥和环割处理对枝条萌芽率无明显促进作用,但有利于枝条增粗;不同修剪措施总体上有利于其叶片及枝条中碳水化合物的合成和积累。总体上,1/3短截及枝条和主干的适度环剥可促进品种‘马罕’结果枝的形成。  相似文献   

10.
Mulberry Leaf Metabolism under High Temperature Stress   总被引:5,自引:0,他引:5  
Effects of high temperature on the activity of photosynthetic enzymes and leaf proteins were studied in mulberry (Morus alba L. cv. BC2-59). A series of experiments were conducted at regular intervals (120, 240 and 360 min) to characterize changes in activities of ribulose-1,5-bisphosphate carboxylase (RuBPC) and sucrose phosphate synthase (SPS), photosystem 2 (PS 2) activity, chlorophyll (Chl), carotenoid (Car), starch, sucrose (Suc), amino acid, free proline, protein and nucleic acid contents in leaves under high temperature (40 °C) treatments. High temperature markedly reduced the activities of RuBPC and SPS in leaf extracts. Chl content and PS 2 activity in isolated chloroplasts were also affected by high temperature, particularly over 360 min treatment. Increased leaf temperature affected sugar metabolism through reductions in leaf starch content and sucrose-starch balance. While total soluble protein content decreased under heat, total amino acid content increased. Proline accumulation (1.5-fold) was noticed in high temperature-stressed leaves. A reduction in the contents of foliar nitrogen and nucleic acids (DNA and RNA) was also noticed. SDS-PAGE protein profile showed few additional proteins (68 and 85 kDa) in mulberry plants under heat stress compared to control plants. Our results clearly suggest that mulberry plants are very sensitive to high temperature with particular reference to the photosynthetic carbon metabolism.  相似文献   

11.
Mepiquat chloride (N, N-dimethylpiperidinium chloride), well known as PIX, is a potential systemic plant growth regulator. The effects of PIX on plant height, stem elongation, leaf area, net photosynthetic rates, chlorophyll content, sucrose and starch levels, and RuBP carboxylase activity in cotton (Gossypium hirsutum L. cv. DES 119) plants were measured. PIX was sprayed (0, 7.65, 15.3, 30.6 or 61.2 g active ingredient ha–1) on the plants at first square (25 days after emergence) and measurements were made at frequent intervals. Plant height was clearly reduced by PIX. The total length of vegetative branches and fruiting branches was 40% and 50% less than the control. Total leaf area in PIX treated plants was 16% less than the control. Net photosynthetic rates were 25% less in PIX-treated leaves. PIX treated leaves had more chlorophyll content. The activity of RuBP carboxylase was decreased in PIX treated plants. Starch accumulation was noticed in PIX treated leaves while sucrose content was not changed. The data reported here suggest that reduced growth responses induced by PIX results in partial loss of photosynthetic capacity in cotton at least up to 20 days after application of the growth regulator.  相似文献   

12.
The growth and development of soybeans (Glycine max L. cv. Amsoy) was studied at soil matric potentials of ?0.1 to ?1.0 bars. Chlorophyll, photosynthesis, and leaf nitrogen per plant was greatest at ?4 bars leaf water potential. Leaf area, number of internodes, plant height and dry weight of vegetative parts declined as leaf water potential decreased from ?2 to ?19 bars. Nitrogen content and nitrate reductase activity per g fresh weight determined the percentage protein of individual seeds but nitrogen content and nitrate reductase activity per plant determined the amount of total seed protein. The protein synthesized in the seed changed little in amino acid composition with changes in leaf water potential. Leaf water potentials above or below ?4 bars decreased yield, total protein and total lipid but plants produced the largest percentage of individual seed protein at ?19 bars leaf water potential.  相似文献   

13.
In onion ( Allium cepa L.) postponement of sprouting is necessary to achieve long term storage. We studied the factors determining sprouting during dry storage at 16°C. The period to visible sprouting depends on the length of the dormancy period, if present, and on the growth rate of the sprout. In the three cultivars tested, sprouts were initiated within 2 weeks after harvest indicating the absence of a real dormancy period. Sprout length increased linearly during storage. The mitotic activity of the apex decreased before harvest, was low at the transition from scale to leaf formation, and increased again when the sprout was initiated. From a few weeks before harvest, the initially high fructan content of the scales decreased, leading to a large increase in fructose. The sprout always contained enough carbohydrates for growth (between 50 and 60 mg g−1 dry weight, of which 30% was fructan). The activity of sucrose synthase (EC 2.4.1.13) increased as the sprout grew, indicating an increase in sink strength. Invertase (EC 3.2.1.26) was absent in all bulb organs, during the various developmental stages. Although carbohydrates and enzymes were available for fast sprouting, sprout growth was still linear instead of exponential during dry storage at temperatures favorable for growth (16°C). The relative importance of factors determining sprouting are discussed.  相似文献   

14.
Chemical suppression of the symptoms of two virus diseases   总被引:3,自引:0,他引:3  
Carbendazim applied at the rate of 2 g per plant to the roots of tobacco (Nicotiana tabacum cv. White Burley) plants before infection with tobacco mosaic virus (TMV) caused very considerable reduction in the severity of disease symptoms in systemically infected leaves but did not affect their virus content. Leaves of untreated, infected plants had a greatly reduced chlorophyll content 100 days after infection whereas the chlorophyll content of leaves of infected plants treated with carbendazim was similar to that of normal uninfected leaves. Carbendazim had no effect on the infectivity of TMV in vitro or on the local lesion reaction of N. glutinosa plants when inoculated with TMV. Carbendazim was applied to lettuce cv. Cobham Green at a total rate of o-i g per plant before and after they were infected with beet western yellows virus and the plants were then grown on in the field. At harvest time (50 days after infection) almost all the treated virus-infected plants were of a normal green appearance, whereas the untreated controls were almost all very severely yellowed and unmarketable.  相似文献   

15.
Paclobutrazol [(2RS,3RS)-1-(4-chlorophenyl)methyl-4,4-dimethyl-2-(1h-1,2,4-trizol-1-yl)penten-3-ol] effectively decreased vegetative growth of rice (Oryza sativa L.) seedlings and increased the chlorophyll content. The number of veins in a leaf, the calculated number of stomata per leaf, and the length of guard cells were not altered by the paclobutrazol treatment, suggesting an effect on cell elongation. The allocation pattern of carbohydrates was changed by either gibberellin (GA) or paclobutrazol treatment. GA3 induced more shoot growth and less accumulation of starch than the control and paclobutrazol-treated seedlings. Photosynthetic ability was not affected by either paclobutrazol or GA3 treatment. Paclobutrazol-treated plants allocated a smaller amount of photosynthates for vegetative shoot growth and stored more as starch in the crowns than the control and GA3-treated plants. The same starch degrading activity in the crown tissue of paclobutrazol-treated seedlings as in control plants suggests that the accumulated starch is utilized in a normal activity for growth including leaf emergence, tiller formation, and root production, resulting in improved seedling quality. Received May 30, 1996; accepted December 10, 1996  相似文献   

16.
Abstract Changes in the phytochrome status at the end of the daily photosynthetic period result in several plant responses. To understand the causal relations among these responses it is useful to investigate species or experimental conditions where the most common correlations among responses are broken. A step in this direction is presented here with Petunia axilaris, where FR-treated plants showed low chlorophyll content and erect leaves, but- contrary to other species-higher leaf area and plant dry weight. Differences in area expansion were related to the late phase of leaf growth and were due, at least in part, to larger cells in FR-treated plants. Effects on length/width ratio, specific leaf area, net assimilation rate, shoot/root ratio and leaf number were small or non-existent. It is suggested that the lower chlorophyll content in FR-treated plants was not a consequence of scarcity of assimilates.  相似文献   

17.
The content and composition of lipids were studied in the seeds of radish plants (Raphanus sativus L. var. radicula D.C., cv. Rosovo-krashyi s belym konchikom) grown from “seed to seed” in 2008 and 2009 in the greenhouse of the Institute of Plant Physiology in a permanent horizontal magnetic field (PMF) of Helmholz coils with the strength of ~400 A/m, in soil culture, at natural day length, and a temperature changing during the day. PMF suppressed all stages of radish plant development, from the appearance of alternative leaves to the formation of pods and mature seeds. In plants of the North-South magnetically oriented type (NS MOT), PMF reduced the number and weight of seeds; in the West-East magnetically oriented type (WEMOT), the number of seeds was reduced but their weights increased. In the seeds of the first generation of NS MOT, the total lipid content was higher than in the seeds of WE MOT. The amount of polar lipids in the seeds of NS MOT increased, whereas in the seeds of WE MOT it decreased or remained unchanged as compared with control. The content of neutral lipids reduced in both plant types. The strongest changes in the fatty acid composition of lipids with the highest content of unsaturated fatty acids were observed in the seeds of WE MOT in 2008. The weak PMF-induced differences in the changes of lipid composition and content in the seeds of different MOTs were evidently determined by seed sensitivity to the direction of field action. It is suggested that the occurrence of different MOTs increases the tolerance of plant population to unfavorable environmental factors, thus affecting its survival.  相似文献   

18.
Quantitative changes in total leaf soluble proteins, proline, carbohydrate content, chlorophyll fluorescence, guaiacol peroxidase (POD) and catalase (CAT) activities were determined in a less cold-hardy (LCH) spring cv. Kohdasht (LT50 = −6°C), a semi cold-hardy (SCH) facultative cv. Azar 2 (LT50 = −15°C), and a cold-hardy (CH) winter cv. Norstar (LT50 = −26°C) of wheat (Triticum aestivum L.) exposed to 4°C for 9 weeks. Seedlings were grown in a controlled growth room for 14 days at 20°C and then transferred to 4°C (experimental day 0) for 63 days (cold treatment); otherwise they were maintained continuously at 20°C (control treatment). The samples were harvested 0, 2, 21, 28, 42, and 63 days after exposure to 4°C. The results showed significant low temperature (LT)-induced accumulation of total soluble proteins, proline, and carbohydrates and elevation in activities of CAT and POD in leaves of SCH and CH winter cultivars rather than in LCH spring cultivar. In contrast, the chlorophyll fluorescence (F v/F m) declined during LT treatment irrespective of cultivar. The results suggest that developmental traits such as vernalization requirement of wheat affects on cold-tolerance expression system of plants.  相似文献   

19.
A Zea mays callus culture containing chlorophyll was established and grown photomixotrophically. Cell chloroplast structure, and pigment and soluble protein contents were examined. Expression of some key enzymes of C4 carbon metabolism was compared with that of etiolated (heterotrophic) and green photoautotrophic leaves. Chlorophyll content of the callus was 15–20% that of green leaves. Soluble protein content of callus was half that of leaf cells. Electron microscopic observations showed that green callus cells contained only typical granal chloroplasts. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.38) activities in green callus were ca 30% those of green leaves but 2–3 times higher than in etiolated leaves. Quantitative enzyme protein determination, using antibodies specific to maize leaf Rubisco showed that the chloroplastic carboxylase represented about 7% of total soluble protein in green callus, in parallel to its low chlorophyll content. The specific activity of Rubisco in callus and leaves was unchanged. Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) activity in green callus was about 20% that of green leaves and similar to that measured in etiolated leaves. Apparent Km (PEP) values (0.08 mM) for PEPC isolated from green callus and etiolated leaves were very different from values (0.5 mM) obtained with PEPC from green leaves. These kinetic characteristics together with the absence of inhibition by malate and activation by glucose-6-phosphate suggest that the properties of PEPC isolated from green callus and etiolated maize leaves are very similar to those of PEPPC from C3 plants. Using PEPC antibodies specific to green maize leaf enzyme, immunotitration of PEPC preparations containing identical enzyme units allowed complete precipitation of the green leaf enzyme with increasing antibody volumes. In contrast, 60–70% of the activity of PEPC from etiolated and green callus was inhibited, suggesting low affinity for the maize green leaf PEPC antiserum (typical C4 form). Ouchterlony double diffusion tests revealed only partial recognition of PEPC in green callus and etiolated leaves. NAD-malate dehydrogenase (NAD-MDH, EC 1.1.1.37) activity in callus was 2 and 3 times higher, respectively, than in etiolated and green leaves. NADP-malic enzyme (NADP-ME, EC 1.1.1.40) activity in callus cultures was much lower than in green leaves. All our data support the hypothesis that cultures of fully dedifferentiated chlorophyllous tissues of Zea mays possess a C3-like metabolism.  相似文献   

20.
Among photomixotrophic green calluses tested (N. rustica. N. tobacum L. cv. BY-4 and Samsun), the callus of Samsun had the highest contents of chlorophyll and chloroplast lipids, such as monogalactosyldiglyceride (MGDG), digalactosyldiglyceride (DGDG), sulfoquinovosyldigly-ceride (SQDG) and phosphatidylglycerol (PG). However, the chlorophyll and chloroplast lipids in the green callus of Samsun were still 1/6 and 1/3 of that in the parent leaves, respectively. The relative content of a-linolenate in MGDG, DGDG and SQDG of the green calluses were higher than that of the white calluses. The ratios of hexadecatrienoate in MGDG and hexadeceno-ate 3-trans) in PG in the green calluses were trace or less compared with that of the parent leaves. The crude lipids and total fatty acid contents of the chlorophyll deficient leaves (N. taba-cum L. cv. Consolation 402 and Dominant Aurea Su/su) were almost the same as those of the normal leaves (cv. BY-4 and Samsun), although the chlorophyll contents of the chlorophyll deficient leaves were 1/3 ~ 1/4 of that of the normal leaves. The ratios of chloroplast lipids in the total polar lipids in the chlorophyll deficient leaves were a little lower than that in the normal green leaves, but the former had a slightly higher ratio of phospholipids such as phosphatidylcholine and phosphatidylethanolamine than the latter. There were few differences in the fatty acid compositions of each individual lipid betweeen both types of leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号