首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mutational analyses of the secreted recombinant insulin receptor extracellular domain have identified a ligand binding site composed of residues located in the L1 domain (amino acids 1-470) and at the C terminus of the alpha subunit (amino acids 705-715). To evaluate the physiological significance of this ligand binding site, we have transiently expressed cDNAs encoding full-length receptors with alanine mutations of the residues forming the functional epitopes of this binding site and determined their insulin binding properties. Insulin bound to wild-type receptors with complex kinetics, which were fitted to a two-component sequential model; the Kd of the high affinity component was 0.03 nM and that of the low affinity component was 0.4 nM. Mutations of Arg14, Phe64, Phe705, Glu706, Tyr708, Asn711, and Val715 inactivated the receptor. Alanine mutation of Asn15 resulted in a 20-fold decrease in affinity, whereas mutations of Asp12, Gln34, Leu36, Leu37, Leu87, Phe89, Tyr91, Lys121, Leu709, and Phe714 all resulted in 4-10-fold decreases. When the effects of the mutations were compared with those of the same mutations of the secreted recombinant receptor, significant differences were observed for Asn15, Leu37, Asp707, Leu709, Tyr708, Asn711, Phe714, and Val715, suggesting that the molecular basis for the interaction of each form of the receptor with insulin differs. We also examined the effects of alanine mutations of Asn15, Gln34, and Phe89 on insulin-induced receptor autophosphorylation. They had no effect on the maximal response to insulin but produced an increase in the EC50 commensurate with their effect on the affinity of the receptor for insulin.  相似文献   

2.
The high resolution crystal structure of an N-terminal fragment of the IGF-I receptor, has been reported. While this fragment is itself devoid of ligand binding activity, mutational analysis has indicated that its N terminus (L1, amino acids 1-150) and the C terminus of its cysteine-rich domain (amino acids 190-300) contain ligand binding determinants. Mutational analysis also suggests that amino acids 692-702 from the C terminus of the alpha subunit are critical for ligand binding. A fusion protein, formed from these fragments, binds IGF-I with an affinity similar to that of the whole extracellular domain, suggesting that these are the minimal structural elements of the IGF-I binding site. To further characterize the binding site, we have performed structure directed and alanine-scanning mutagenesis of L1, the cysteine-rich domain and amino acids 692-702. Alanine mutants of residues in these regions were transiently expressed as secreted recombinant receptors and their affinity was determined. In L1 alanine mutants of Asp(8), Asn(11), Tyr(28), His(30), Leu(33), Leu(56), Phe(58), Arg(59), and Trp(79) produced a 2- to 10-fold decrease in affinity and alanine mutation of Phe(90) resulted in a 23-fold decrease in affinity. In the cysteine-rich domain, mutation of Arg(240), Phe(241), Glu(242), and Phe(251) produced a 2- to 10-fold decrease in affinity. In the region between amino acids 692 and 702, alanine mutation of Phe(701) produced a receptor devoid of binding activity and alanine mutations of Phe(693), Glu(693), Asn(694), Leu(696), His(697), Asn(698), and Ile(700) exhibited decreases in affinity ranging from 10- to 30-fold. With the exception of Trp(79), the disruptive mutants in L1 form a discrete epitope on the surface of the receptor. Those in the cysteine-rich domain essential for intact affinity also form a discrete epitope together with Trp(79).  相似文献   

3.
Insulin and the insulin-like growth factors (IGFs) bind with high affinity to their cognate receptor and with lower affinity to the noncognate receptor. The major structural difference between insulin and the IGFs is that the IGFs are single chain polypeptides containing A-, B-, C-, and D-domains, whereas the insulin molecule contains separate A- and B-chains. The C-domain of IGF-I is critical for high affinity binding to the insulin-like growth factor I receptor, and lack of a C-domain largely explains the low affinity of insulin for the insulin-like growth factor I receptor. It is less clear why the IGFs have lower affinity for the insulin receptor. In this study, 24 insulin analogues and four IGF analogues were expressed and analyzed to explore the role of amino acid differences in the A- and B-domains between insulin and the IGFs in binding affinity for the insulin receptor. Using the information obtained from single substituted analogues, four multiple substituted analogues were produced. A "quadruple insulin" analogue ([Phe(A8), Ser(A10), Thr(B5), Gln(B16)]Ins) showed affinity as IGF-I for the insulin receptor, and a "sextuple insulin" analogue ([Phe(A8), Ser(A10), Thr(A18), Thr(B5), Thr(B14), Gln(B16)]Ins) showed an affinity close to that of IGF-II for the insulin receptor, whereas a "quadruple IGF-I" analogue ([His(4), Tyr(15), Thr(49), Ile(51)]IGF-I) and a "sextuple IGF-II" analogue ([His(7), Ala(16), Tyr(18), Thr(48), Ile(50), Asn(58)]IGF-II) showed affinities similar to that of insulin for the insulin receptor. The mitogenic potency of these analogues correlated well with the binding properties. Thus, a small number of A- and B-domain substitutions that map to the IGF surface equivalent to the classical binding surface of insulin weaken two hotspots that bind to the insulin receptor site 1.  相似文献   

4.
The human insulin receptor is expressed as two isoforms that are generated by alternate splicing of its mRNA; the B isoform has 12 additional amino acids (718-729) encoded by exon 11 of the gene. The isoforms have been reported to have different ligand binding properties. To further characterize their insulin binding properties, we have performed structure-directed alanine-scanning mutagenesis of a major insulin binding site of the receptor, formed from the receptor L1 domain (amino acids 1-470) and amino acids 705-715 at the C terminus of the alpha subunit. Alanine mutants of each isoform were transiently expressed as recombinant secreted extracellular domain in 293 cells, and their insulin binding properties were evaluated by competitive binding assays. Mutation of Arg(86) and Phe(96) of each isoform resulted in receptors that were not secreted. The Kds of unmutated receptors were almost identical for both isoforms. Several new mutations compromising insulin binding were identified. In L1, mutation of Leu(37) decreased affinity 20- to 40-fold and mutations of Val(94), Glu(97), Glu(120), and Lys(121) 3 to 10-fold for each isoform. A number of mutations produced differential effects on the two isoforms. Mutation of Asn(15) in the L1 domain and Phe(714) at the C terminus of the alpha subunit inactivated the A isoform but only reduced the affinity of the B isoform 40- to 60-fold. At the C terminus of the alpha subunit, mutations of Asp(707), Val(713), and Val(715) produced 7- to 16-fold reductions in affinity of the A isoform but were without effect on the B isoform. In contrast, alanine mutations of Tyr(708) and Asn(711) inactivated the B isoform but only reduced the affinities of the A isoform 11- and 6-fold, respectively. In conclusion, alanine-scanning mutagenesis of the insulin receptor A and B isoforms has identified several new side chains contributing to insulin binding and indicates that the energetic contributions of certain side chains differ in each isoform, suggesting that different molecular mechanisms are used to obtain the same affinity.  相似文献   

5.
A series of insulin-like growth factor I (IGF-I) structural analogs in which one or more of the three tyrosine residues were replaced with nonaromatic residues were produced and their binding properties characterized. The single point mutations, [Leu24]IGF-I, [Ala31]IGF-I, and [Leu60]IGF-I result in an 18-, 6-, or 20-fold loss in affinity, respectively, for the type 1 IGF receptor. Multiple mutations, [Ala31,Leu60]IGF-I, [Leu24, Ala31]IGF-I, [Leu24, Leu60]IGF-I, or [Leu24, Ala31, Leu60]IGF-I result in a 520-, 240-, 1200-, or greater than 1200-fold loss in affinity, respectively, at the type 1 IGF receptor. In contrast, none of the analogs display greater than a 2-fold loss in affinity for the acid-stable human serum binding proteins. At the insulin receptor, [Ala31]IGF-I and [Leu24]IGF-I are equipotent to and 5-fold less potent than IGF-I, whereas [Leu60]IGF-I and the multiple mutation analogs are inactive up to 10 microM. Analogs [Leu24]IGF-I, [Ala31]IGF-I, and [Leu24, Ala31]IGF-I are equipotent to IGF-I at the type 2 IGF receptor, whereas all analogs containing Leu60 demonstrate little measurable affinity at this receptor. Thus, Tyr24, Tyr31, and Tyr60 are involved in the high affinity binding of IGF-I to the type 1 IGF receptor, while Tyr60 is important for maintaining binding to the type 2 IGF receptor.  相似文献   

6.
Dong M  Le A  Te JA  Pinon DI  Bordner AJ  Miller LJ 《Biochemistry》2011,50(14):2983-2993
Secretin is a linear 27-residue peptide hormone that stimulates pancreatic and biliary ductular bicarbonate and water secretion by acting at its family B G protein-coupled receptor. While, like other family members, the carboxyl-terminal region of secretin is most important for high affinity binding and its amino-terminal region is most important for receptor selectivity and receptor activation, determinants for these activities are distributed throughout the entire length of this peptide. In this work, we have systematically investigated changing each residue within secretin to alanine and evaluating the impact on receptor binding and biological activity. The residues most critical for receptor binding were His1, Asp3, Gly4, Phe6, Thr7, Ser8, Leu10, Asp15, Leu19, and Leu23. The residues most critical for biological activity included His1, Gly4, Thr7, Ser8, Glu9, Leu10, Leu19, Leu22, and Leu23, with Asp3, Phe6, Ser11, Leu13, Asp15, Leu26, and Val27 also contributing. While the importance of residues in positions analogous to His1, Asp3, Phe6, Thr7, and Leu23 is conserved for several closely related members of this family, Leu19 is uniquely important for secretin. We, therefore, have further studied this residue by molecular modeling and molecular dynamics simulations. Indeed, the molecular dynamics simulations showed that mutation of Leu19 to alanine was destabilizing, with this effect greater than that observed for the analogous position in the other close family members. This could reflect reduced contact with the receptor or an increase in the solvent-accessible surface area of the hydrophobic residues in the carboxyl terminus of secretin as bound to its receptor.  相似文献   

7.
为了研究胰岛素受体结合部位的结构和功能,设计并用固相方法合成了3个六肽.在浓度大于1×103nmol/L时,cyclo(Phe-Phe-Val-Leu-Tyr-Gly)具有明显的胰岛素受体结合活力;H-Phe-Phe-Val-Leu-Tyr-Gly-OH的这一活力则不明显;而H-Gly-Glu-Arg-Gly-Phe-Phe-OH则增强胰岛素和其受体的亲和性.然而,它们都没有体内生物活性.这表明:环六肽部分模拟了胰岛素受体结合部位的空间构象;胰岛素受体结合部位的疏水性和其中的B23Gly-B24Phe-B25Phe对胰岛素和其受体的结合起重要作用.  相似文献   

8.
Four structural analogs of human insulin-like growth factor I (hIGF-I) have been prepared by site-directed mutagenesis of a synthetic IGF-I gene and subsequent expression and purification of the mutant protein from the conditioned media of transformed yeast. [Phe-1,Val1,Asn2, Gln3,His4,Ser8, His9,Glu12,Tyr15,Leu16]IGF-I (B-chain mutant), in which the first 16 amino acids of hIGF-I were replaced with the first 17 amino acids of the B-chain of insulin, has greater than 1,000-, 100-, and 2-fold reduced potency for human serum binding proteins, the rat liver type 2 IGF receptor, and the human placental type 1 IGF receptor, respectively. The B-chain mutant also has 4-fold increased affinity for the human placental insulin receptor. [Gln3,Ala4]IGF-I has 4-fold reduced affinity for human serum binding proteins, but is equipotent to hIGF-I at the types 1 and 2 IGF and insulin receptors. [Tyr15,Leu16]IGF-I has 4-fold reduced affinity for human serum binding proteins and 10-fold increased affinity for the insulin receptor. This peptide is also equipotent to hIGF-I at the types 1 and 2 IGF receptors. The peptide in which these four-point mutations are combined, [Gln3,Ala4,Tyr15,Leu16]IGF-I, has 600-fold reduced affinity for the serum binding proteins. This peptide has 10-fold increased potency for the insulin receptor, but is equipotent to hIGF-I at the types 1 and 2 IGF receptors. All four of these mutants stimulate DNA synthesis in the rat vascular smooth muscle cell line A10 with potencies reflecting their potency at the type 1 IGF receptor. These studies identify some of the domains of hIGF-I which are responsible for maintaining high affinity binding with the serum binding protein and the type 2 IGF receptor. In addition, these peptides will be useful in defining the role of the type 2 IGF receptor and serum binding proteins in the physiological actions of hIGF-I.  相似文献   

9.
In contrast to autoantibodies that are functionally silenced or deleted, IgG Abs that react with autologous insulin routinely follow hormone administration and arise spontaneously in autoimmune (type I) diabetes mellitus. To understand Ab interactions with autologous insulin, rat proinsulin I and 32 alanine substituted analogues were expressed as fusion proteins and used to examine 16 anti-insulin mAb in ELISA. The results identify several amino acid residues that contribute to binding by a large majority (>75%) of mAb, although no single residue is uniformly required for binding by all mAb. Replacements at charged or polar residues on the insulin surface including A4 (Asp), A5 (Gln), A9 (Ser) A12 (Ser), A17 (Gln), A18 (Asn), B13 (Glu), and B21 (Glu) consistently decreased mAb binding. Single alanine substitutions at positions A16 (Leu), A11 (Cys), B8 (Gly), and B15 (Leu) that are predicted to alter the core structure or chain folding vary widely in their impact on Ab binding. mAb that bind insulin preferentially on solid phase (i.e., ELISA) are highly sensitive to replacement of single residues, and substitutions that alter conformation abolish binding. In contrast, high affinity mAb that bind insulin in solution are relatively insensitive to substitutions at single residues, and they maintain binding to all mutants, including those with disrupted conformation. For such high affinity mAb, replacement of long hydrophobic side chains can augment binding, suggesting mAb interactions with insulin include an induced fit. Thus, the ability of insulin to function as a "molten globule" may contribute to the diversity and autoreactivity of the anti-insulin repertoire.  相似文献   

10.
Structure-activity studies of vasoactive intestinal polypeptide.   总被引:2,自引:0,他引:2  
This report explores the potential side-chain functional groups required for interaction of the bronchodilator neuropeptide, vasoactive intestinal peptide (VIP), with its receptor. The binding affinity and biological activity of native VIP have been found to be sensitive to the removal of amino- and carboxyl-terminal residues. This data suggests that elements within the entire primary sequence of the VIP molecule appear to be necessary for recognition by VIP receptors. The introduction of alanine residues substituted into the VIP molecule is utilized to probe for side-chain functional groups that are crucial for eliciting high receptor binding affinity in vitro and high biological potency in vivo. The VIP pharmacophore appears to be identical in guinea pig lung and human lung and consists of multiple binding sites most likely involving positions Asp3, Phe6, Thr7, Tyr10, Tyr22, and Leu23. These findings could be exploited to enhance the biological potency of VIP by increasing the binding energy at these positions.  相似文献   

11.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

12.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

13.
The IGF-1R [type 1 IGF (insulin-like growth factor) receptor] is activated upon binding to IGF-I and IGF-II leading to cell growth, survival and migration of both normal and cancerous cells. We have characterized the binding interaction between the IGF-1R and its ligands using two high-affinity mouse anti-IGF-1R mAbs (monoclonal antibodies), 7C2 and 9E11. These mAbs both block IGF-I binding to the IGF-1R but have no effect on IGF-II binding. Epitope mapping using chimaeras of the IGF-1R and insulin receptor revealed that the mAbs bind to the CR (cysteine-rich) domain of IGF-1R. The epitope was finely mapped using single point mutations in the IGF-1R. Mutation of Phe241, Phe251 or Phe266 completely abolished 7C2 and 9E11 binding. The three-dimensional structure showed that these residues cluster on the surface of the CR-domain. BIAcore analyses revealed that IGF-I and a chimaeric IGF-II with the IGF-I C-domain competed for the binding of both mAbs with the IGF-1R, whereas neither IGF-II nor a chimaeric IGF-I with the IGF-II C-domain affected antibody binding. We therefore conclude the IGF-I C-domain interacts with the CR (cysteine-rich) domain of the receptor at the cluster of residues Phe241, Phe251 and Phe266. These results allow precise orientation of IGF-I within the IGF-I-IGF-1R complex involving the IGF-I C-domain binding to the IGF-1R CR domain. In addition, mAbs 7C2 and 9E11 inhibited both IGF-I- and IGF-II-induced cancer cell proliferation, migration and IGF-1R down-regulation, demonstrating that targeting the IGF-1R is an effective strategy for inhibition of cancer cell growth.  相似文献   

14.
The human gonadotropin-releasing hormone (GnRH) receptor is evolutionarily configured for high affinity binding of GnRH I ([Tyr(5),Leu(7),Arg(8)]GnRH) but at lower affinity for GnRH II ([His(5),Trp(7),Tyr(8)]GnRH). GnRH I is more potent in the activation of the G(q/11) protein in the gonadotrope; however, GnRH II is more potent in the stimulation of apoptosis and antiproliferative effects through activating G(i) protein-mediated signaling, implying that GnRH I and II selectively stabilize different receptor-active conformations that preferentially couple to different signaling pathways. Receptor activation involves ligand induction or conformational selection, but the molecular basis of the communication between ligand-binding sites and receptor allosteric sites remains unclear. We have sought conformational coupling between receptor-ligand intermolecular interactions and intramolecular interaction networks in the human GnRH receptor by mutating remote residues that induce differential ligand binding affinity shifts for GnRH I and II. We have demonstrated that certain Ala mutations in the intracellular segments of transmembrane domains 3 (Met(132)), 5 (Met(227)), 6 (Phe(272) and Phe(276)), and 7 (Ile(322) and Tyr(323)) of the human GnRH receptor allosterically increased ligand binding affinity for GnRH II but had little effect on GnRH I binding affinity. We examined the role of the three amino acids that differ in these two ligands, and we found that Tyr(8) in GnRH II plays a dominant role for the increased affinity of the receptor mutants for GnRH II. We propose that creation of a high affinity binding site for GnRH II accompanies receptor conformational changes, i.e."induced fit" or "conformational selection," mainly determined by the intermolecular interactions between Tyr(8) and the receptor contact residues, which can be facilitated by disruption of particular sets of receptor-stabilizing intramolecular interactions. The findings suggest that GnRH I and II binding may selectively stabilize different receptor-active conformations and therefore different ligand-induced selective signaling described previously for these ligands.  相似文献   

15.
16.
Whittaker L  Hao C  Fu W  Whittaker J 《Biochemistry》2008,47(48):12900-12909
The interaction of insulin with its receptor is complex. Kinetic and equilibrium binding studies suggest coexistence of high- and low-affinity binding sites or negative cooperativity. These phenomena and high-affinity interactions are dependent on the dimeric structure of the receptor. Structure-function studies of insulin analogs suggest insulin has two receptor binding sites, implying a bivalent interaction with the receptor. Alanine scanning studies of the secreted recombinant receptor implicate the L1 domain and a C-terminal peptide of the receptor alpha subunit as components of one ligand binding site. Functional studies suggest that the first and second type III fibronectin repeats of the receptor contain a second ligand binding site. We have used structure-directed alanine scanning mutagenesis to identify determinants in these domains involved in ligand interactions. cDNAs encoding alanine mutants of the holo-receptor were transiently expressed in 293 cells, and the binding properties of the expressed receptor were determined. Alanine mutations of Lys(484), Leu(552), Asp(591), Ile(602), Lys(616), Asp(620), and Pro(621) compromised affinities for insulin 2-5-fold. With the exception of Asp(620), none of these mutations compromised the affinity of the recombinant secreted receptor for insulin, indicating that the perturbation of the interaction is at the site of mutation and not an indirect effect on the interaction with the binding site of the secreted receptor. These residues thus form part of a novel ligand binding site of the insulin receptor. Complementation experiments demonstrate that insulin interacts in trans with both receptor binding sites to generate high-affinity interactions.  相似文献   

17.
A complete series of analogs of tyrosine modified neurokinin A ([Tyr1]-NKA or [Tyr0]-NKA) has been synthesized by substituting each natural residue with 1-Cys. These analogs were tested for their ability to bind recombinant neurokinin-2 (NK-2) receptor. Substitution of Phe6 with Cys completely abolished binding of the analog to the receptor. Substitution of residues in the carboxyl-terminal region of the peptide (Met10, Leu9, Gly8, Val7) and Asp4 with Cys gave reductions in binding affinity of between 23- and 250-fold. Molecular dynamics simulations of these analogs suggest that changes in peptide structure and flexibility are not large contributors to the losses in receptor binding affinity. Reductions in binding affinity are therefore more confidently ascribed to losses of peptide-receptor interactions.  相似文献   

18.
Lysosomal biogenesis depends on proper transport of lysosomal enzymes by the cation-dependent mannose 6-phosphate receptor (CD-MPR) from the trans-Golgi network (TGN) to endosomes. Trafficking of the CDMPR is mediated by sorting signals in its cytoplasmic tail. GGA1 (Golgi-localizing, gamma-ear-containing, ARF-binding protein-1) binds to CD-MPR in the TGN and targets the receptor to clathrin-coated pits for transport from the TGN to endosomes. The motif of the CD-MPR that interacts with GGA1 was shown to be 61DXXLL65. Reports on increased affinity of cargo, when phosphorylated by casein kinase 2 (CK2), to GGAs focused our interest on the effect of the CD-MPR CK2 site on binding to GGA1. Here we demonstrate that Glu58 and Glu59 of the CK2 site are essential for high affinity GGA1 binding in vitro, whereas the phosphorylation of Ser57 of the CD-MPR has no influence on receptor binding to GGA1. Furthermore, the in vivo interaction between GGA1 and CD-MPR was abolished only when all residues involved in GGA1 binding were mutated, namely, Glu58, Glu59, Asp61, Leu64, and Leu65. In contrast, the binding of adaptor protein-1 (AP-1) to CD-MPR required all the glutamates surrounding the phosphorylation site, namely, Glu55, Glu56, Glu58, and Glu59, but like GGA1 binding, was independent of the phosphorylation of Ser57. The binding affinity of GGA1 to the CD-MPR was found to be 2.4-fold higher than that of AP-1. This could regulate the binding of the two proteins to the partly overlapping sorting signals, allowing AP-1 binding to the CD-MPR only when GGA1 is released upon autoinhibition by phosphorylation.  相似文献   

19.
CXCR4 is a G-coupled receptor for the stromal cell-derived factor (SDF-1) chemokine, and a CD4-associated human immunodeficiency virus type 1 (HIV-1) coreceptor. These functions were studied in a panel of CXCR4 mutants bearing deletions in the NH(2)-terminal extracellular domain (NT) or substitutions in the NT, the extracellular loops (ECL), or the transmembrane domains (TMs). The coreceptor activity of CXCR4 was markedly impaired by mutations of two Tyr residues in NT (Y7A/Y12A) or at a single Asp residue in ECL2 (D193A), ECL3 (D262A), or TMII (D97N). These acidic residues could engage electrostatical interactions with basic residues of the HIV-1 envelope protein gp120, known to contribute to the selectivity for CXCR4. The ability of CXCR4 mutants to bind SDF-1 and mediate cell signal was consistent with the two-site model of chemokine-receptor interaction. Site I involved in SDF-1 binding but not signaling was located in NT with particular importance of Glu(14) and/or Glu(15) and Tyr(21). Residues required for both SDF-1 binding and signaling, and thus probably part of site II, were identified in ECL2 (Asp(187)), TMII (Asp(97)), and TMVII (Glu(288)). The first residues () of NT also seem required for SDF-1 binding and signaling. A deletion in the third intracellular loop abolished signaling, probably by disrupting the coupling with G proteins. The identification of CXCR4 residues involved in the interaction with both SDF-1 and HIV-1 may account for the signaling activity of gp120 and has implications for the development of antiviral compounds.  相似文献   

20.
The high affinity receptor for IgE (FcepsilonRI) plays an integral role in triggering IgE-mediated hypersensitivity reactions. The IgE-interactive site of human FcepsilonRI has previously been broadly mapped to several large regions in the second extracellular domain (D2) of the alpha-subunit (FcepsilonRIalpha). In this study, the IgE binding site of human FcepsilonRIalpha has been further localized to subregions of D2, and key residues putatively involved in the interaction with IgE have been identified. Chimeric receptors generated between FcepsilonRIalpha and the functionally distinct but structurally homologous low affinity receptor for IgG (FcgammaRIIa) have been used to localize two IgE binding regions of FcepsilonRIalpha to amino acid segments Tyr129-His134 and Lys154-Glu161. Both regions were capable of independently binding IgE upon placement into FcgammaRIIa. Molecular modeling of the three-dimensional structure of FcepsilonRIalpha-D2 has suggested that these binding regions correspond to the "exposed" C'-E and F-G loop regions at the membrane distal portion of the domain. A systematic site-directed mutagenesis strategy, whereby each residue in the Tyr129-His134 and Lys154-Glu161 regions of FcepsilonRIalpha was replaced with alanine, has identified key residues putatively involved in the interaction with IgE. Substitution of Tyr131, Glu132, Val155, and Asp159 decreased the binding of IgE, whereas substitution of Trp130, Trp156, Tyr160, and Glu161 increased binding. In addition, mutagenesis of residues Trp113, Val115, and Tyr116 in the B-C loop region, which lies adjacent to the C'-E and F-G loops, has suggested Trp113 also contributes to IgE binding, since the substitution of this residue with alanine dramatically reduces binding. This information should prove valuable in the design of strategies to intervene in the FcepsilonRIalpha-IgE interaction for the possible treatment of IgE-mediated allergic disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号