首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mutations impacting specific stages of cell growth and division have provided a foundation for dissecting mechanisms that underlie cell cycle progression. We have undertaken an objective examination of the yeast cell cycle through flow cytometric analysis of DNA content in TetO(7) promoter mutant strains representing 75% of all essential yeast genes. More than 65% of the strains displayed specific alterations in DNA content, suggesting that reduced function of an essential gene in most cases impairs progression through a specific stage of the cell cycle. Because of the large number of essential genes required for protein biosynthesis, G1 accumulation was the most common phenotype observed in our analysis. In contrast, relatively few mutants displayed S-phase delay, and most of these were defective in genes required for DNA replication or nucleotide metabolism. G2 accumulation appeared to arise from a variety of defects. In addition to providing a global view of the diversity of essential cellular processes that influence cell cycle progression, these data also provided predictions regarding the functions of individual genes: we identified four new genes involved in protein trafficking (NUS1, PHS1, PGA2, PGA3), and we found that CSE1 and SMC4 are important for DNA replication.  相似文献   

2.
Recent work has dramatically changed our view of chromosome segregation in bacteria. Rather than being a passive process, it involves rapid movement of parts of the circular chromosome. Several genes involved in chromosome segregation have been identified, and the analysis of their functions and intracellular localization are beginning to shed light on the mechanisms that ensure efficient chromosome segregation.  相似文献   

3.
Counterflow centrifugal elutriation and immunoblotting techniques were used to study the expression of the retinoblastoma (RB) gene during the cell cycle of BV173 chronic myeloid leukemia (CML) cells. Our data showed that Rb protein started to be phosphorylated at early G1 phase, became hyperphosphorylated when cells progressed to late G1 and S phases during cell cycle, and remained hyperphosphorylated throughout S and G2/M phases. Our data suggest that Rb phosphorylation starts at a more distal point to the G1/S phase boundary in human myeloid leukemia BV173 cells rather than at a point more proximal to the G1/S boundary, as seen in HeLa cells.  相似文献   

4.
Stepwise changes in the rate of phosphatidylethanolamine and phospholipid synthesis during the cell division cycle of Escherichia coli B/r were observed. The cell ages at the increases were found to be a function of the growth rate. At each growth rate, the increase occurred around the time new rounds of chromosome replication were inaugurated in the cycle.  相似文献   

5.
The kinetics of cell division have been studied in a strain of Escherichia coli which has an amber mutation in the ftsA gene and which also carries a temperature sensitive amber suppressor. This strain is therefore temperature sensitive for the synthesis of the ftsA protein. Cells of this strain were able to divide only if the synthesis of this protein took place during a specific part of the cell cycle. This was a short period (roughly 10 min in duration) immediately before the normal time of cell division.  相似文献   

6.
Flagellation of Pseudomonas aeruginosa during the cell division cycle   总被引:1,自引:0,他引:1  
Flagellation of Pseudomonas aeruginosa during the cell division cycle was examined by scanning electron microscopy. A new flagellum grows on an old polar end located at the opposite position of the parental flagellum in the late stage of the cell cycle.  相似文献   

7.
8.
Overexpression of plasmid-coded PBP 3 was analyzed in strains harboring ftsA, ftsH, pbpB (ftsI), ftsQ, ftsZ, or recA441 (Tif) mutations. Higher cellular levels of PBP 3, the pbpB gene product, could not restore septum formation of ftsA, ftsQ, ftsZ, and recA (Tif) mutants at 42 degrees C. However, filamentation in strains harboring pbpB and ftsH mutations was fully suppressed by PBP 3 overexpression. Additional observations indicated that the Y16 (ftsH) strain, not transformed with the PBP 3-overproducing plasmid, had no detectable PBP 3 in envelopes after incubation at the restrictive temperature. These results suggest that suppression of filamentation of fts strains overexpressing wild-type cell division proteins after the shift to the restrictive temperature can be a useful strategy to demonstrate in vivo interactions of cell division gene products.  相似文献   

9.
The growth and division of mitochondria during the cell cycle was investigated by a morphometric analysis of electron micrographs of synchronized HeLa cells. The ratio of total outer membrane contour length to cytoplasmic area did not vary significantly during the cell cycle, implying a continuous growth of the mitochondrial outer membrane. The mean fraction of cytoplasmic area occupied by mitochondrial profiles was likewise found to remain constant, indicating that the increase in total mitochondrial volume per cell occurs continuously during interphase, in such a way that the mitochondrial complement occupies a constant fraction( approximately 10-11(percent)) of the volume of the cytoplasm. The mean area, outer membrane contour length, and axis ratio of the mitochondrial profiles also did not vary appreciably during the cell cycle; furthermore, the close similarity of the frequency distributions of these parameters for the six experimental time-points suggested a stable mitochondrial shape distribution. The constancy of both the mean mitochondrial profile area and the number of mitochondrial profiles per unit of cytoplasmic area was interpreted to indicate the continuous division of mitochondria at the level of the cell population. Furthermore, no evidence was found for the occurrence of synchronous mitochondrial growth and division within individual cells. Thus, it appears that, in HeLa cells, there is no fixed temporal relationship between the growth and division of mitochondria and the events of the cell cycle. A number of statistical methods were developed for the purpose of making numerical estimates of certain three-dimensional cellular and mitochondrial parameters. Mean cellular and cytoplasmic volumes were calculated for the six time-points; both exhibited a nonlinear, approx. twofold increase. A comparison of the axis ratio distributions of the mitochondrial profiles with theoretical distributions expected from random sectioning of bodies of various three-dimensional shapes allowed the derivation of an "average" mitochondrial shape. This, in turn, permitted calculations to be made which expressed the two-dimensional results in three-dimensional terms. Thus, the estimated values for the number of mitochondria per unit of cytoplasmic volume and for the mean mitochondrial volume were found to remain constant during the cell cycle, while the estimated number of mitochondria per cell increase approx. twofold in an essentially continuous manner.  相似文献   

10.
Changes in cell diameter during the division cycle of Escherichia coli   总被引:20,自引:17,他引:3       下载免费PDF全文
Extensive measurements of steady-state populations of several Escherichia coli strains have consistently indicated that cell diameter decreases with increasing cell length. This was observed both after electron microscopy of air-dried cells and after phase-contrast microscopy of living cells. The analysis was made by considering separately the unconstricted cells and three classes (slight, medium, and deep) of constricted cells in the population. During slow growth, cells with the average newborn length were up to 8% thicker than unconstricted cells twice as long. This decrease in diameter is less at higher growth rates. Despite the small changes and the large variation of the diameter in any particular length class, significant negative correlations between diameter and length were obtained. Cell diameter increases again at the end of the cell cycle as indicated by an increase of average diameter in the three consecutive classes of constriction.  相似文献   

11.
Temperature-sensitive yeast mutants defective in gene CDC24 continued to grow (i.e., increase in cell mass and cell volume) at restrictive temperature (36 degrees C) but were unable to form buds. Staining with the fluorescent dye Calcofluor showed that the mutants were also unable to form normal bud scars (the discrete chitin rings formed in the cell wall at budding sites) at 36 degrees C; instead, large amounts of chitin were deposited randomly over the surfaces of the growing unbudded cells. Labeling of cell-wall mannan with fluorescein isothiocyanate-conjugated concanavalin A suggested that mannan incorporation was also delocalized in mutant cells grown at 36 degrees C. Although the mutants have well-defined execution points just before bud emergence, inactivation of the CDC24 gene product in budded cells led both to selective growth of mother cells rather than of buds and to delocalized chitin deposition, indicating that the CDC24 gene product functions in the normal localization of growth in budded as well as in unbudded cells. Growth of the mutant strains at temperatures less than 36 degrees C revealed allele-specific differences in behavior. Two strains produced buds of abnormal shape during growth at 33 degrees C. Moreover, these same strains displayed abnormal localization of budding sites when growth at 24 degrees C (the normal permissive temperature for the mutants); in each case, the abnormal pattern of budding sites segregated with the temperature sensitivity in crosses. Thus, the CDC24 gene product seems to be involved in selection of the budding site, formation of the chitin ring at that site, the subsequent localization of new cell wall growth to the budding site and the growing bud, and the balance between tip growth and uniform growth of the bud that leads to the normal cell shape.  相似文献   

12.
Summary Temperature-sensitive cell division cycle (cdc) mutants of the fission yeastSchizosaccharomyces pombe, previously characterized as defective in nuclear division were examined by thin section electron microscopy. All of the mutants failed to enter mitosis, rather they accumulated at one of four distinct terminal phenotypes. Class one were arrested with a nucleus rectangular in cross-section and a laterally situated spindle pole body (SPB). The second group had spherical or rectangular nuclei with a single SPB. The sole member of the third group wascdc 27. K 3, which had a spherical crenated nucleus with a single SPB from which microtubules emerged and extended into the cytoplasm. Allelic variants ofcdc 25 comprised the fourth group all of which displayed aberrant nuclear morphologies. Utilizing this ultrastructural data together with a knowledge of the transition points of these mutants a model for the interdependence of certain cell cycle event is proposed in which the initiation of DNA synthesis is uncoupled from the replication and separation of the SPB. This paper also provides new information on SPB structure inS. pombe. This is discussed in connection with the transient assembly of both spindle and cytoplasmic microtubules.  相似文献   

13.
14.
P L Chen  P Scully  J Y Shew  J Y Wang  W H Lee 《Cell》1989,58(6):1193-1198
Introduction of an exogenous retinoblastoma (RB) gene in RB-deficient retinoblastoma or osteosarcoma cells has been shown to suppress their neoplastic phenotype. In experiments designed to explore the potential mechanism of RB tumor suppression, we report here that the phosphorylation state of RB protein is modulated during normal cellular events. In resting cells, RB protein is present in its least phosphorylated form; in rapidly proliferating cells, RB protein is highly phosphorylated. Maximal phosphorylation is associated with S phase of the cell cycle. Induction of differentiation in several human leukemia cell lines by treatment with phorbol ester or retinoic acid leads to dephosphorylation of RB. Time course studies indicate that RB dephosphorylation precedes the total arrest of cell growth during differentiation. These observations strongly suggest that the function of RB protein is modulated by a phosphorylation/dephosphorylation mechanism during cell proliferation and differentiation.  相似文献   

15.
16.
17.
18.
Increase in the mean cell mass of undivided cells was determined during the division cycle of Escherichia coli B/rA. Cell buoyant densities during the division cycle were determined after cells from an exponentially growing culture were separated by size. The buoyant densities of these cells were essentially independent of cell age, with a mean value of 1.094 g ml-1. Mean cell volume and buoyant density were also determined during synchronous growth in two different media, which provided doubling times of 40 and 25 min. Cell volume and mass increased linearly at both growth rates, as buoyant density did not vary significantly. The results are consistent with only one of the three major models of cell growth, linear growth, which specifies that the rate of increase in cell mass is constant throughout the division cycle.  相似文献   

19.
20.
A L Cleary  L G Smith 《The Plant cell》1998,10(11):1875-1888
The cytoskeleton plays a major role in the spatial regulation of plant cell division and morphogenesis. Arrays of microtubules and actin filaments present in the cell cortex during prophase mark sites to which phragmoplasts and associated cell plates are guided during cytokinesis. During interphase, cortical microtubules are believed to influence the orientation of cell expansion by guiding the pattern in which cell wall material is laid down. Little is known about the mechanisms that regulate these cytoskeleton-dependent processes critical for plant development. Previous work showed that the Tangled1 (Tan1) gene of maize is required for spatial regulation of cytokinesis during maize leaf development but not for leaf morphogenesis. Here, we examine the cytoskeletal arrays associated with cell division and morphogenesis during the development of tan1 and wild-type leaves. Our analysis leads to the conclusion that Tan1 is required both for the positioning of cytoskeletal arrays that establish planes of cell division during prophase and for spatial guidance of expanding phragmoplasts toward preestablished cortical division sites during cytokinesis. Observations on the organization of interphase cortical microtubules suggest that regional influences may play a role in coordinating cell expansion patterns among groups of cells during leaf morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号