首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was previously shown that myelin basic protein (MBP) can induce phase segregation in whole myelin monolayers and myelin lipid films, which leads to the accumulation of proteins into a separate phase, segregated from a cholesterol-enriched lipid phase. In this work we investigated some factors regulating the phase segregation induced by MBP using fluorescent microscopy of monolayers formed with binary and ternary lipid mixtures of dihydrocholesterol (a less-oxidable cholesterol analog) and phospholipids. The influence of the addition of salts to the subphase and of varying the lipid composition was analyzed. Our results show that MBP can induce a dihydrocholesterol-dependent segregation of phases that can be further regulated by the electrolyte concentration in the subphase and the composition (type and proportion) of non-sterol lipids. In this way, changes of the lipid composition of the film or the ionic strength in the aqueous media modify the local surface density of MBP and the properties (phase state and composition) of the protein environment.  相似文献   

2.
Interaction of glycosylated human myelin basic protein with lipid bilayers   总被引:1,自引:0,他引:1  
Myelin basic protein (MBP), isolated from normal human myelin, was glycosylated with UDP-N-acetyl-D-galactosamine and a glycosyltransferase isolated from porcine submaxillary glands. MBP containing 0.85 mol of N-acetyl-D-galactosamine per mole of protein was oxidized at carbon 6 by galactose oxidase and complexed with a spin-label, Tempoamine, in order to study its interactions with lipids. When the spin-labeled MBP was reacted with lipid vesicles consisting of DSPG, DPPG, and DMPG, most of the spin-label was motionally restricted in the gel phase, with a correlation time greater than 10(-8)s. The motion increased with increasing temperature and was sensitive to the lipid phase transition. Interaction with the gel phase of DPPA caused much less motional restriction of the probe. However, melting of the lipid allowed increased interaction and motional restriction of the probe, which was only partially reversed on cooling back to the gel phase. The motional restriction of the probe in these lipids is attributed to its penetration partway into the lipid bilayer in both the gel and liquid-crystalline phases. The fact that the probe bound to the protein can penetrate partway into the bilayer suggests that other hydrophobic side chains and residues of the protein can similarly penetrate into the bilayer. Additional evidence for penetration was provided by digestion of the lipid-bound protein with endoproteinase Lys-C. When nonglycosylated and glycosylated MBP in solution was treated with Lys-C, extensive digestion occurred. A single radioactive peptide which eluted at 25 min was identified as residues 92-105.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The thermotropic behavior of the natural glycosphingolipids galactosylceramide, asialo-Gal beta 1-3GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-4Glc beta 1-Cer (GM1), sulfatide, GM1, NeuAc alpha 2-3Gal beta 1-3GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-4Glc beta 1-1Cer (GD1a), and NeuAc alpha 2-3Gal beta 1-3GalNAc beta 1-4Gal(3-2 alpha NeuAc8-2 alpha NeuAc)beta 1-4Glc beta 1-1 Cer (GT1b), and their mixtures with dipalmitoylphosphatidylcholine (DPPC) in the presence of myelin basic protein (MBP) was studied by high sensitivity differential scanning calorimetry. The transition temperature of DPPC, galactosylceramide, and asialo-GM1 is affected little by MBP while their transition enthalpy is decreased in proportion to the amount of protein in the mixture. The thermotropic behavior of anionic glycosphingolipids is considerably perturbed by MBP. The transition temperature of gangliosides increases in the presence of MBP, whereas that of sulfatide decreases. The enthalpy of the transition of anionic glycosphingolipids increases markedly in the presence of MBP. The excess heat capacity function of these systems can be resolved into two independent phase transitions. Phase separation of enriched lipid/protein domains occurs in a magnitude that depends on the amount of MBP; the rest of the lipid phase exhibits some altered thermodynamic properties. In mixtures of glycosphingolipids with DPPC, phase separation is also present but no phase transition with the characteristic of pure DPPC is found. MBP is changing the properties of the lipid mixture as a whole and does not interact exclusively with the glycosphingolipids. The proportion of MBP required to produce the maximal changes is greater the greater the complexity of the glycosphingolipids polar head group. Relatively small variations of the amount of MBP induce large shifts in the proportion of the different phases present.  相似文献   

4.
31P-NMR and X-ray diffraction techniques are used to study the comparative ability of myelin basic protein (MBP) vs. other basic proteins to convert hexagonal (HII) phases to stable lamellar (L alpha) structures. Pure dioleoylphosphatidylethanolamine (DOPE) at pH 9 and 7, and mixtures of DOPE/phosphatidylserine (PS) (95:5 and 80:20% w/w) at pH 7 were employed for this investigation. The polymorphic behavior of the lipid suspensions was evaluated in the presence and absence of several basic proteins (MBP, calf thymus histone, lysozyme, melittin) and the cationic polypeptide, polylysine (PL). Each of the proteins and PL was capable of binding the pure DOPE HII phase at pH 9 but with varying morphological consequences, i.e., lamellar stabilization (MBP, histone, PL), formation of new protein-DOPE HII phases (lysozyme) or lipid disordering/vesiculation (melittin). Reduction to pH 7 resulted in the dissociation of protein from DOPE - with the exception of melittin - and the reformation of a pure lipid HII phase. Additions of PS to DOPE at pH 7 facilitated protein binding, but among the proteins examined, only MBP was capable of converting the lipid suspension into a stable multilamellar form. Differences in the lipid morphology produced by each protein are discussed in terms of protein physicochemical characteristics. In addition, a possible relationship between MBP-lipid interactions and the stability of myelin sheath lipid multilayers is inferred from the significant bilayer-stabilizing capacity of MBP.  相似文献   

5.
Myelin basic protein (MBP) is a major protein of the myelin membrane in the central nervous system. It is believed to play a relevant role in the structure and function of the myelin sheath and is a candidate autoantigen in demyelinating processes such as multiple sclerosis. MBP has many features typical of soluble proteins but is capable of strongly interacting with lipids, probably via a conformation change. Its structure in the lipid membrane as well as the details of its interaction with the lipid membrane are still to be resolved. In this article we study the interaction of MBP with Langmuir films of anionic and neutral phospholipids, used as experimental models of the lipid membrane. By analyzing the equilibrium surface pressure/area isotherms of these films, we measured the protein partition coefficient between the aqueous solution and the lipid membrane, the mixing ratio between protein and lipid, and the area of the protein molecules inserted in the lipid film. The penetration depth of MBP in the lipid monolayer was evaluated by x-ray reflectivity measurements. The mixing ratio and the MBP molecular area decrease as the surface pressure increases, and at high surface pressure the protein is preferentially located at the lipid/water interface for both anionic and neutral lipids. The morphology of MBP adsorbed on lipid films was studied by atomic force microscopy. MBP forms bean-like structures and induces a lateral compaction of the lipid surface. Scattered MBP particles have also been observed. These particles, which are 2.35-nm high, 4.7-nm wide, and 13.3-nm long, could be formed by protein-lipid complexes. On the basis of their size, they could also be either single MBP molecules or pairs of c-shaped interpenetrating molecules.  相似文献   

6.
While the role of the signal sequence in targeting proteins to specific subcellular compartments is well characterized, there are fewer studies that characterize its effects on the stability and folding kinetics of the protein. We report a detailed characterization of the folding kinetics and thermodynamic stabilities of maltose binding protein (MBP) and its precursor form, preMBP. Isothermal GdmCl and urea denaturation as a function of temperature and thermal denaturation studies have been carried out to compare stabilities of the two proteins. preMBP was found to be destabilized by about 2-6 kcal/mol (20-40%) with respect to MBP. Rapid cleavage of the signal peptide by various proteases shows that the signal peptide is accessible in the native form of preMBP. The observed rate constant of the major slow phase in folding was decreased 5-fold in preMBP relative to MBP. The rate constants of unfolding were similar at 25 degrees C, but preMBP also exhibited a large burst phase change in unfolding that was absent in MBP. At 10 degrees C, preMBP exhibited a higher unfolding rate than MBP as well as a large burst phase. The appreciable destabilization of MBP by signal peptide is functionally relevant, because it enhances the likelihood of finding the protein in an unfolded translocation-competent form and may influence the interactions of the protein with the translocation machinery. Destabilization is likely to result from favorable interactions between the hydrophobic signal peptide and other hydrophobic regions that are exposed in the unfolded state.  相似文献   

7.
Myelin basic protein (MBP) is considered to have a primary role in the formation and maintenance of the myelin sheath. Many studies using artificial vesicle systems of simple lipid composition, and generally small size, have shown that MBP can elicit vesicle fusion, aggregation, or even fragmentation under different conditions. Here, we have studied the effects of increasing concentrations of bovine MBP charge isomer C1 (MBP/C1) on large unilamellar vesicles (LUVs) composed of phosphatidylcholine and phosphatidylserine (92:8 molar ratio), or with a lipid composition similar to that of the myelin membrane in vivo (Cyt-LUVs). Using absorbance spectrophotometry, fluorescence resonance energy transfer, dynamic light scattering and transmission electron microscopy, we have shown that vesicle aggregation and some vesicle fusion occurred upon addition of MBP/C1, and as the molar protein-lipid ratio increased. Fragmentation of Cyt-LUVs was observed at very high protein concentrations. These results showed that the phenomena of vesicle fusion, aggregation, and fragmentation can all be observed in one in vitro system, but were dependent on lipid composition and on the relative proportions of protein and lipid.  相似文献   

8.
Mice homozygous for the autosomal recessive mutation shiverer (shi) lack myelin basic protein (MBP) and exhibit a distinct behavioral pattern including tremors (shivering), convulsions, and early death. We have previously demonstrated that shiverer mice have a partial deletion in the gene encoding MBP. We now have introduced the wild-type MBP gene into the germ line of shiverer mice by microinjection into fertilized eggs. Transgenic shiverer mice homozygous for the introduced gene have MBP mRNA and protein levels that are approximately 25% of normal, and produce compacted myelin with major dense lines. Correct temporal and spatial expression of the MBP gene is achieved with a genomic MBP cosmid clone containing 4 kb of 5' flanking sequence and 1 kb of 3' flanking sequence. Moreover, the four different forms of MBP produced by alternative patterns of RNA splicing are present. These homozygous transgenic shiverer mice no longer shiver nor die prematurely.  相似文献   

9.
Boggs JM  Rangaraj G 《Biochemistry》2000,39(26):7799-7806
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocytes (OLs) and is believed to be responsible for adhesion of these surfaces in the multilayered myelin sheath. MBP in solution has been shown by others to bind to both G- and F-actin, to bundle F-actin filaments, and to induce polymerization of G-actin. Here we show that MBP bound to acidic lipids can also bind to both G- and F-actin and cause their sedimentation together with MBP-lipid vesicles. Thus it can simultaneously utilize some of its basic residues to bind to the lipid bilayer and some to bind to actin. The amount of actin bound to the MBP-lipid vesicles decreased with increasing net negative surface charge of the lipid vesicles. It was also less for vesicles containing the lipid composition predicted for the cytosolic surface of myelin than for PC vesicles containing a similar amount of an acidic lipid. Calmodulin caused dissociation of actin from MBP and of the MBP-actin complex from the vesicles. However, it did not cause dissociation of bundles of actin filaments once these had formed as long as some MBP was still present. These results suggest that MBP could be a membrane actin-binding protein in OLs/myelin and its actin binding can be regulated by calmodulin and by the lipid composition of the membrane. Actin binding to MBP decreased the labeling of MBP by the hydrophobic photolabel 3-(trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine (TID), indicating that it decreased the hydrophobic interactions of MBP with the bilayer. This change in interaction of MBP with the bilayer could then create a cytosol to membrane signal caused by changes in interaction of the cytoskeleton with the membrane.  相似文献   

10.
M B Sankaram  P J Brophy  D Marsh 《Biochemistry》1989,28(25):9685-9691
Electron spin resonance (ESR) spectroscopy and chemical binding assays were used to study the interaction of bovine spinal cord myelin basic protein (MBP) with dimyristoylphosphatidylglycerol (DMPG) membranes. Increasing binding of MBP to DMPG bilayers resulted in an increasing motional restriction of PG spin-labeled at the C-5 atom position in the acyl chain, up to a maximum degree of association of 1 MBP molecule per 36 lipid molecules. ESR spectra of PG spin-labels labeled at other positions in the sn-2 chain showed a similar motional restriction, while still preserving the chain flexibility gradient characteristic of fluid lipid bilayers. In addition, labels at the C-12 and C-14 atom positions gave two-component spectra, suggesting a partial hydrophobic penetration of the MBP into the bilayer. Spectral subtractions were used to quantitate the membrane penetration in terms of the stoichiometry of the lipid-protein complexes. Approximately 50% of the spin-labeled lipid chains were directly affected at saturation protein binding. The salt and pH dependence of the ESR spectra and of the protein binding demonstrated that electrostatic interaction of the basic residues of the MBP with the PG headgroups is necessary for an effective association of the MBP with phospholipid bilayers. Binding of the protein, and concomitant perturbation of the lipid chain mobility, was reduced as the ionic strength increased, until at salt concentrations above 1 M NaCl the protein was no longer bound. The binding and ESR spectral perturbation also decreased as the protein charge was reduced by pH titration to above the pI of the protein at approximately pH 10.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
M B Sankaram  P J Brophy  D Marsh 《Biochemistry》1991,30(24):5866-5873
The integral proteolipid apoprotein (PLP) from bovine spinal cord has been reconstituted in dimyristoylphosphatidylglycerol (DMPG) bilayers, and the mutual interactions on binding the peripheral myelin basic protein (MBP) have been studied. Quantitation of protein and lipid contents in the MBP-PLP-DMPG double recombinants at different PLP:DMPG ratios led to the conclusion that MBP binds only to the DMPG lipid headgroups and is hindered from interaction with the first shell of lipids surrounding the PLP. No specific PLP-MBP association could be detected. Electron spin resonance (ESR) spectra of phosphatidylglycerol spin-labeled at position n = 5 in the sn-2 chain showed that complexation of MBP with the PLP-DMPG recombinants leads to a decrease in lipid chain mobility to an extent which correlates with the degree of MBP binding. At low DMPG:PLP ratios, the perturbations of lipid mobility by both proteins are mutually enhanced. In single recombinants of PLP with DMPG, the ESR spectra of phosphatidylglycerol spin-labeled at position n = 14 in the sn-2 chain indicated that approximately 10 lipids/protein are motionally restricted by direct contact with the intramembranous surface of the protein. This number is in agreement with earlier results for reconstitutions of PLP in dimyristoylphosphatidylcholine (DMPC) [Brophy, P. J., Horváth, L. I., & Marsh, D. (1984) Biochemistry 23, 860-865] and is consistent with a hexameric arrangement of the PLP molecules in DMPG bilayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Characterization of dodecylphosphocholine/myelin basic protein complexes   总被引:2,自引:0,他引:2  
The stoichiometry of myelin basic protein (MBP)/dodecylphosphocholine (DPC) complexes and the location of protein segments in the micelle have been investigated by electron paramagnetic resonance (EPR), ultracentrifugation, photon correlation light scattering, 31P, 13C, and 1H nuclear magnetic resonance (NMR), and electron microscopy. Ultracentrifugation measurements indicate that MBP forms stoichiometrically well-defined complexes consisting of 1 protein molecule and approximately 140 detergent molecules. The spin-labels 5-, 12-, and 16-doxylstearate have been incorporated into DPC/MBP aggregates. EPR spectral parameters and 13C and 1H NMR relaxation times indicate that the addition of MBP does not affect the environment and location of the labels or the organization of the micelles except for a slight increase in size. Previous results indicating that the protein lies primarily near the surface of the micelle have been confirmed by comparing 13C NMR spectra of the detergent with and without protein with spectra of protein/detergent aggregates containing spin-labels. Electron micrographs of the complexes taken by using the freeze-fracture technique confirm the estimated size obtained by light-scattering measurements. Overall, these results indicate that mixtures of MBP and DPC can form highly porous particles with well-defined protein and lipid stoichiometry. The structural integrity of these particles appears to be based on protein-lipid interactions. In addition, electron micrographs of aqueous DPC/MBP suspensions show the formation of a small amount of material consisting of large arrays of detergent micelles, suggesting that MBP is capable of inducing large changes in the overall organization of the detergent.  相似文献   

13.
Interaction of myelin basic protein with micelles of dodecylphosphocholine   总被引:3,自引:0,他引:3  
Interactions of myelin basic protein (MBP) and peptides derived from it with micelles of dodecylphosphocholine (DPC) and perdeuterated DPC have been studied by proton nuclear magnetic resonance (NMR) at 400 MHz and by circular dichroism (CD). When MBP binds to DPC micelles, it acquires about 18% alpha-helicity. The CD spectra of various peptides derived by cleavage of MBP indicate that a major alpha-helical region occurs in residues 85-99 just before the sequence of three prolyl residues 100-102. From line broadenings by fatty acid spin-labels in the micelles and from changes in chemical shifts, the NMR data identify specific residues in MBP that participate in lipid binding. One such sequence is an alpha-helical region from residues 85 to 95, and others occur around methionine-21 and between residues 117 and 135. The different effects of C5, C12, and C16 spin-labels suggest that some segments of the protein may penetrate beyond the dipolar interfacial region of the micelles into the hydrophobic interior, but no part of the protein is protected by the micelles against rapid exchange of its amide groups with the aqueous environment. Even at a lipid to protein molar ratio of 200/1, most NMR resonances from side chains of amino acid residues are not appreciably broadened, suggesting that much of the polypeptide remains highly mobile.  相似文献   

14.
Myelin basic protein (MBP) is a multifunctional protein involved in maintaining the stability and integrity of the myelin sheath by a variety of interactions with membranes and other proteins. It assembles actin filaments and microtubules, can bind actin filaments and SH3-domains to a membrane surface, and may be able to tether them to the oligodendrocyte membrane and participate in signal transduction in oligodendrocytes/myelin. In the present study, we have shown that the 18.5 kDa MBP isoform can also bind microtubules to lipid vesicles in vitro. Phosphorylation of MBP at Thr94 and Thr97 (bovine sequence) by MAPK, and deimination of MBP (using a pseudo-deiminated recombinant form), had little detectable effect on its ability to polymerize and bundle microtubules, in contrast to the effect of these modifications on MBP-mediated assembly of actin. However, these modifications dramatically decreased the ability of MBP to tether microtubules to lipid vesicles. MBP and its phosphorylated and pseudo-deiminated variants were also able to bind microtubules to actin filaments. These results suggest that MBP may be able to tether microtubules to the cytoplasmic surface of the oligodendrocyte membrane, and that this binding can be regulated by post-translational modifications to MBP. We further show that MBP appears to be co-localized with actin filaments and microtubules in cultured oligodendrocytes, and also at the interface between actin filaments at the leading edge of membrane processes and microtubules behind them. Thus, MBP may also cross-link microtubules to actin filaments in vivo.  相似文献   

15.
The Basic Protein of CNS Myelin: Its Structure and Ligand Binding   总被引:5,自引:0,他引:5  
Consideration of the evidence presented in this review leads to the following conclusions: (a) Isolated MBP in aqueous solution has little ordered secondary or tertiary structure. (b) In this state, the protein can associate with a wide range of hydrophobic and amphiphilic compounds, these interactions involving limited sections of the protein. (c) The strength of binding to bilayers and the accompanying conformational changes in the protein are greatest for systems containing acidic lipids, presumably because of the involvement of ionic interactions. (d) When bound to bilayers of acidic lipids, MBP will have substantially more ordered secondary structure than it manifests in aqueous solution, and it is likely to be oligomeric (possibly hexameric). (e) MBP does affect the organization of lipid aggregates. It influences strongly the separation of bilayers in multilayers of purified lipids, and at present this must be viewed as its prime role within myelin. The greatest impediment to our understanding of MBP is the lack of an assayable biological activity. In contrast to the situation with enzymes, for example, we have no functional test for changes in protein structure or changes accompanying interactions with other molecules. Current evidence suggests that the protein has a structural role within myelin and that its own three-dimensional structure is strongly dependent on the molecules with which it is associated. If this picture is correct, studies of the isolated protein or of the protein in reconstituted lipid systems may yield, at best, a rough guide to the structure within its biological environment. Further clarification of the structure and function of MBP may have to await development of more powerful techniques for studying proteins bound to large molecular aggregates, such as lipid bilayers. The paucity of generally applicable methods is reflected in the fact that even low resolution structures are known for only a handful of intrinsic membrane proteins, and even more limited information exists for proteins associated with membrane surfaces. However, the increasing use of a combination of electron microscopy and diffraction on two-dimensional arrays of proteins formed on lipid bilayers (Henderson et al., 1990) offers the hope that it may not be too long before it will be possible to study at moderate resolution the three-dimensional structure of MBP bound to a lipid membrane.  相似文献   

16.
Myelin basic protein is a water soluble membrane protein which interacts with acidic lipids through some type of hydrophobic interaction in addition to electrostatic interactions. Here we show that it can be labeled from within the lipid bilayer when bound to acidic lipids with the hydrophobic photolabel 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine (TID) and by two lipid photolabels. The latter included one with the reactive group near the apolar/polar interface and one with the reactive group linked to an acyl chain to position it deeper in the bilayer. The regions of the protein which interact hydrophobically with lipid to the greatest extent were determined by cleaving the TID-labeled myelin basic protein (MBP) with cathepsin D into peptides 1-43, 44-89, and 90-170. All three peptides from lipid-bound protein were labeled much more than peptides from the protein labeled in solution. However, the peptide labeling pattern was similar for both environments. The two peptides in the N-terminal half were labeled similarly and about twice as much as the C-terminal peptide indicating that the N-terminal half interacts hydrophobically with lipid more than the C-terminal half. MBP can be modified post-translationally in vivo, including by deamidation, which may alter its interactions with lipid. However, deamidation had no effect on the TID labeling of MBP or on the labeling pattern of the cathepsin D peptides. The site of deamidation has been reported to be in the C-terminal half, and its lack of effect on hydrophobic interactions of MBP with lipid are consistent with the conclusion that the N-terminal half interacts hydrophobically more than the C-terminal half. Since other studies of the interaction of isolated N-terminal and C-terminal peptides with lipid also indicate that the N-terminal half interacts hydrophobically with lipid more than the C-terminal half, these results from photolabeling of the intact protein suggest that the N-terminal half of the intact protein interacts with lipid in a similar way as the isolated peptide. The similar behavior of the intact protein to that of its isolated peptides suggests that when the purified protein binds to acidic lipids, it is in a conformation which allows both halves of the protein to interact independently with the lipid bilayer. That is, it does not form a hydrophobic domain made up from different parts of the protein.  相似文献   

17.
The 18.5-kDa classic myelin basic protein (MBP) is an intrinsically disordered protein arising from the Golli (Genes of Oligodendrocyte Lineage) gene complex and is responsible for compaction of the myelin sheath in the central nervous system. This MBP splice isoform also has a plethora of post-translational modifications including phosphorylation, deimination, methylation, and deamidation, that reduce its overall net charge and alter its protein and lipid associations within oligodendrocytes (OLGs). It was originally thought that MBP was simply a structural component of myelin; however, additional investigations have demonstrated that MBP is multi-functional, having numerous protein-protein interactions with Ca2+-calmodulin, actin, tubulin, and proteins with SH3-domains, and it can tether these proteins to a lipid membrane in vitro. Here, we have examined cytoskeletal interactions of classic 18.5-kDa MBP, in vivo, using early developmental N19-OLGs transfected with fluorescently-tagged MBP, actin, tubulin, and zonula occludens 1 (ZO-1). We show that MBP redistributes to distinct ‘membrane-ruffled’ regions of the plasma membrane where it co-localizes with actin and tubulin, and with the SH3-domain-containing proteins cortactin and ZO-1, when stimulated with PMA, a potent activator of the protein kinase C pathway. Moreover, using phospho-specific antibody staining, we show an increase in phosphorylated Thr98 MBP (human sequence numbering) in membrane-ruffled OLGs. Previously, Thr98 phosphorylation of MBP has been shown to affect its conformation, interactions with other proteins, and tethering of other proteins to the membrane in vitro. Here, MBP and actin were also co-localized in new focal adhesion contacts induced by IGF-1 stimulation in cells grown on laminin-2. This study supports a role for classic MBP isoforms in cytoskeletal and other protein-protein interactions during membrane and cytoskeletal remodeling in OLGs.  相似文献   

18.
Myelin basic protein (MBP), particularly the classic 18.5-kDa isoform, is a major structural protein of the myelin sheath of the central nervous system. It is an intrinsically disordered, peripheral membrane protein that shows structural polymorphism in combination with several overlapping interaction sites. Here, double electron-electron resonance (DEER) spectroscopy, in combination with a simplified, semi-quantitative analysis based on Monte Carlo simulations, is used to determine the distance distribution of murine 18.5-kDa MBP, unmodified charge component-C1, on large unilamellar vesicles of a lipid composition mimicking the cytoplasmic leaflet of myelin. Three singly spin-labeled MBP variants and a mixture of singly-labeled MBP variants are used. The MBPs, each bearing only one spin label, exhibit average intermolecular distances that are significantly shorter than the distances expected when assuming a random distribution at the employed lipid-to-protein ratios, indicating self-assembly on the membrane. The distribution of elliptical pervaded areas (hard ellipses) on a two-dimensional surface can serve as a model of the nonspecific self-assembly process. The corresponding pair correlation functions g(r) are determined from Monte Carlo simulations with variation of various parameters such as the ellipses' aspect ratios. Comparing the g(r) values with the DEER-derived distance distributions, the pervaded volume is best characterized by a nearly elliptical projection onto the membrane, with an aspect ratio of approximately 1.5, and with the longer semi-axis of approximately 1.4nm. The approach of using local information from DEER with low-resolution models derived from Monte Carlo simulations can be applied to study the lateral self-assembly properties of other protein complexes on membranes.  相似文献   

19.
H Mueller  H J Butt    E Bamberg 《Biophysical journal》1999,76(2):1072-1079
The mechanical and adhesion properties of myelin basic protein (MBP) are important for its function, namely the compaction of the myelin sheath. To get more information about these properties we used atomic force microscopy to study tip-sample interaction of mica and mixed dioleoylphosphatidylserine (DOPS) (20%)/egg phosphatidylcholine (EPC) (80%) lipid bilayer surfaces in the absence and presence of bovine MBP. On mica or DOPS/EPC bilayers a short-range repulsive force (decay length 1.0-1.3 nm) was observed during the approach. The presence of MBP always led to an attractive force between tip and sample. When retracting the tip again, force curves on mica and on lipid layers were different. While attached to the mica surface, the MBP molecules exhibited elastic stretching behavior that agreed with the worm-like chain model, yielding a persistence length of 0.5 +/- 0.25 nm and an average contour length of 53 +/- 19 nm. MBP attached to a lipid bilayer did not show elastic stretching behavior. This shows that the protein adopts a different conformation when in contact with lipids. The lipid bilayer is strongly modified by MBP attachment, indicating formation of MBP-lipid complexes and possibly disruption of the original bilayer structure.  相似文献   

20.
Boggs JM  Rangaraj G  Gao W  Heng YM 《Biochemistry》2006,45(2):391-401
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocyte membranes and is most likely responsible for adhesion of these surfaces in the multilayered myelin sheath. It can also polymerize actin, bundle F-actin filaments, and bind actin filaments to lipid bilayers through electrostatic interactions. MBP consists of a number of posttranslationally modified isomers of varying charge, some resulting from phosphorylation at several sites by different kinases, including mitogen-activated protein kinase (MAPK). Phosphorylation of MBP in oligodendrocytes occurs in response to various extracellular stimuli. Phosphorylation/dephosphorylation of MBP also occurs in the myelin sheath in response to electrical activity in the brain. Here we investigate the effect of phosphorylation of MBP on its interaction with actin in vitro by phosphorylating the most highly charged unmodified isomer, C1, at two sites with MAPK. Phosphorylation decreased the ability of MBP to polymerize actin and to bundle actin filaments but had no effect on the dissociation constant of the MBP-actin complex or on the ability of Ca2+-calmodulin to dissociate the complex. The most significant effect of phosphorylation on the MBP-actin complex was a dramatic reduction in its ability to bind to negatively charged lipid bilayers. The effect was much greater than that reported earlier for another charge isomer of MBP, C8, in which six arginines were deiminated to citrulline, resulting in a reduction of net positive charge of 6. These results indicate that although average electrostatic forces are the primary determinant of the interaction of MBP with actin, phosphorylation may have an additional effect due to a site-specific electrostatic effect or to a conformational change. Thus, phosphorylation of MBP, which occurs in response to various extracellular signals in both myelin and oligodendrocytes, attenuates the ability of MBP to polymerize and bundle actin and to bind it to a negatively charged membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号