首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The interaction of two different anti-actin antibody populations with the myosin subfragment 1-F-actin rigor complex has been studied. In contrast with the 1–7 sequence, the 18–28 sequence appears to be strongly implicated in the contact area of the myosin head on the actin polypeptide chain.  相似文献   

2.
Fluorescent labeling, limited proteolysis, amino acid sequence determinations, affinity chromatography and specific chemical crosslinking were used to determine the smallest fragment of gizzard caldesmon that interacts with actin. The time course of cleavage with thrombin or submaxillaris arginase-C protease indicates that 90kDa and 35kDa fragments are the two major pieces of the 120kDa native protein. Amino acid sequence determination indicates that the 90kDa fragment is the N-terminal portion of the molecule. Further degradation gave rise to a 15kDa product whose N-terminal amino acid sequence was determined within the first 28 amino acids. Carbodiimide crosslinking with actin revealed that the 15kDa part of the molecule is probably not involved in the actin binding process but may participate in a twisting of the F-actin filament and be responsible of the caldesmon regulatory function during smooth muscle contraction.  相似文献   

3.
G DasGupta  E Reisler 《Biochemistry》1991,30(41):9961-9966
The binding of myosin subfragment 1 (S-1) to actin in the presence and absence of nucleotides was determined under conditions of partial saturation of actin, up to 80%, by Fab(1-7), the antibodies against the first seven N-terminal residues on actin. In the absence of nucleotides, the binding constant of S-1 to actin (2 x 10(7) M-1) was decreased by 1 order of magnitude by Fab(1-7). The binding of S-1 to actin caused only limited displacement of Fab, and between 30 and 50% of actin appeared to bind both proteins. In the presence of MgAMP.PNP, MgADP, and MgPPi and at low S-1 concentrations, the same antibodies caused a large decrease in the binding of S-1 to actin. However, the binding of S-1.nucleotide to actin in the presence of Fab(1-7) increased cooperatively with the increase in S-1 concentration. Also, in contrast to rigor conditions, there was no indication for the binding of Fab(1-7) and S-1.nucleotide to the same actin molecules. These results show a nucleotide-induced transition in the actomyosin interface, most likely related to the different roles of the N-terminal segment of actin in the binding of S-1 and S-1.nucleotide. The possible implications of these findings to the regulation of actomyosin interactions are discussed.  相似文献   

4.
《The Journal of cell biology》1985,101(5):1850-1857
We have used two actin-binding proteins of the intestinal brush border, TW 260/240 and villin, to examine the effects of filament cross-linking and filament length on myosin-actin interactions. TW 260/240 is a nonerythroid spectrin that is a potent cross-linker of actin filaments. In the presence of this cross-linker we observed a concentration- dependent enhancement of skeletal muscle actomyosin ATPase activity (150-560% of control; maximum enhancement at a 1:70-80 TW 260/240:actin molar ratio). TW 260/240 did not cause a similar enhancement of either acto-heavy meromyosin (HMM) ATPase or acto-myosin subfragment-one (S1) ATPase. Villin, a Ca2+-dependent filament capping and severing protein of the intestinal microvillus, was used to generate populations of actin filaments of various lengths from less than 20 nm to 2.0 microns; (villin:actin ratios of 1:2 to 1:4,000). The effect of filament length on actomyosin ATPase was biphasic. At villin:actin molar ratios of 1:2- 25 actin-activated myosin ATPase activity was inhibited to 20-80% of control values, with maximum inhibition observed at the highest villin:actin ratio. The ATPase activities of acto-HMM and acto-S1 were also inhibited at these short filament lengths. At intermediate filament lengths generated at villin:actin ratios of 1:40-400 (average lengths 0.26-1.1 micron) an enhancement of actomyosin ATPase was observed (130-260% of controls), with a maximum enhancement at average filament lengths of 0.5 micron. The levels of actomyosin ATPase fell off to control values at low concentrations of villin where filament length distributions were almost those of controls. Unlike intact myosin, the actin-activated ATPase of neither HMM nor S1 showed an enhancement at these intermediate actin filament lengths.  相似文献   

5.
The conserved switch 1 loop of P-loop NTPases is implicated as a central element that transmits information between the nucleotide-binding pocket and the binding site of the partner proteins. Recent structural studies have identified two states of switch 1 in G-proteins and myosin, but their role in the transduction mechanism has yet to be clarified. Single tryptophan residues were introduced into the switch 1 region of myosin II motor domain and studied by rapid reaction methods. We found that in the presence of MgADP, two states of switch 1 exist in dynamic equilibrium. Actin binding shifts the equilibrium towards one of the MgADP states, whereas ATP strongly favors the other. In the light of electron cryo-microscopic and X-ray crystallographic results, these findings lead to a specific structural model in which the equilibrium constant between the two states of switch 1 is coupled to the strength of the actin-myosin interaction. This has implications for the enzymatic mechanism of G-proteins and possibly P-loop NTPases in general.  相似文献   

6.
The conformations of myosin subfragment 1 containing trapped MgADP or MgPPi have been studied by investigating the spatial disposition of the remainder of the subfragment 1 structure to the covalently bridged ATPase-related thiols SH1 and SH2. This has been done by synthesizing a trifunctional photoactivatable reagent 4,4'-bis(N-maleimido)benzophenone and reacting it with subfragment 1 in the presence of these ligands. Modification of subfragment 1 by this reagent mimics closely the changes in the ATPase properties as noted previously for modification with p-phenylenedimaleimide. In addition, noncovalent trapping of nucleotide also results, presumably by the bridging of the SH1 and SH2 thiols. On photolysis, cross-linking from the reagent bridging the thiols to other regions in subfragment 1 can be observed, but the extent and course of the photoinduced cross-linking depend on the nature of the trapped ligand. For subfragment 1 with trapped MgADP, a high efficiency cross-linking occurs between the 21-kDa segment and the 50-kDa segment. With MgPPi as the trapped ligand, low efficiency cross-linking occurs between the bridged thiols and either the 27-kDa N-terminal or the 50-kDa segments of the heavy chain. These results indicate that without the adenosine moiety, the binding of MgPPi to subfragment 1 leaves the protein in a flexible state so that residues in both the 27-kDa and the 50-kDa segment can move within the cross-linking span of the activated benzophenone triplet. The trapping of MgADP apparently results in a more rigid state for the subfragment 1 in which residues in the 50-kDa segment are spatially close to the bridged thiols, thus enabling photocross-linking to proceed with higher efficiency.  相似文献   

7.
Six pRNAs (p for packaging) of bacterial virus phi29 form a hexamer complex that is an essential component of the viral DNA translocating motor. Dimers, the building block of pRNA hexamer, assemble in the order of dimer --> tetramer --> hexamer. The two-dimensional structure of the pRNA monomer has been investigated extensively; however, the three-dimensional structure concerning the distance constraints of the three stems and loops are unknown. In this report, we probed the three-dimensional structure of pRNA monomer and dimer by photo affinity cross-linking with azidophenacyl. Bases 75-81 of the left stem were found to be oriented toward the head loop and proximate to bases 26-31 in a parallel orientation. Chemical modification interference indicates the involvement of bases 45-71 and 82-91 in dimer formation. Dimer was formed via hand-in-hand contact, a novel RNA dimerization that in some aspects is similar to the kissing loops of the human immunodeficiency virus. The covalently linked dimers were found to be biologically active. Both the native dimer and the covalently linked dimer were found by cryo-atomic force microscopy to be similar in global conformation and size.  相似文献   

8.
The interaction of troponin-I with the N-terminal region of actin   总被引:5,自引:0,他引:5  
The interaction between troponin-I and actin that underlies thin-filament regulation in striated muscle has been studied using proton magnetic resonance spectroscopy. A restricted portion of skeletal muscle troponin-I (residues 96-116) has previously been shown to be capable of inhibiting the MgATPase activity of actomyosin in a manner enhanced by tropomyosin [Syska et al. (1976) Biochem. J. 153, 375-387]. On the basis of homologous spectral effects for signals of specific groups observed in different complexes formed using the native proteins and a variety of defined peptides, it is concluded that the segment of troponin-I which has inhibitory activity interacts with the N-terminal region of actin. The surface of contact of the inhibitory segment of troponin-I with actin involves two regions of the N-terminal of actin. These are located between residues 1-7 and 19-44. The data are discussed in the context of a structural mechanism for the inhibition of myosin ATPase activation.  相似文献   

9.
The actin-activated Mg2+-ATPase activity of phosphorylated Acanthamoeba myosin I was previously shown to be cooperatively dependent on the myosin concentration (Albanesi, J. P., Fujisaki, H., and Korn, E. D. (1985) J. Biol. Chem. 260, 11174-11179). This observation was rationalized by assuming that myosin I contains a high-affinity and a low-affinity F-actin-binding site and that binding at the low-affinity site is responsible for the actin-activated ATPase activity. Therefore, enzymatic activity would correlate with the cross-linking of actin filaments by myosin I, and the cooperative increase in specific activity at high myosin:actin ratios would result from the fact that cross-linking by one myosin molecule would increase the effective F-actin concentration for neighboring myosin molecules. This model predicts that high specific activity should occur at myosin:actin ratios below that required for cooperative interactions if the actin filaments are cross-linked by catalytically inert cross-linking proteins. This prediction has been confirmed by cross-linking actin filaments with either of three gelation factors isolated from Acanthamoeba, one of which has not been previously described, or by enzymatically inactive unphosphorylated Acanthamoeba myosin I.  相似文献   

10.
Glutaraldehyde (GA) and N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline (EEDQ), a hydrophobic, carboxyl group directed, zero-length protein cross-linker, were employed for the chemical cross-linking of the rigor complex between F-actin and the skeletal myosin S-1. The enzymatic properties and structure of the new covalent complexes obtained with both reagents were determined and compared to those known for the EDC-acto-S-1 complex. The GA- or EEDQ-catalyzed covalent attachment of F-actin to the S-1 heavy chain induced an elevated Mg2+-ATPase activity. The turnover rates of the isolated cross-linked complexes were similar to those for EDC-acto-S-1 (30 s-1). The solution stability of the new complexes is also comparable to that exhibited by EDC-acto-S-1. The proteolytic digestion of the isolated AEDANS-labeled covalent complexes and direct cross-linking experiments between actin and various preformed proteolytic S-1 derivatives indicated that, as observed with EDC, the COOH-terminal 20K and the central 50K heavy chain fragments are involved in the cross-linking reactions of GA and EEDQ. KI-depolymerized acto-S-1 complexes cross-linked by EDC, GA, or EEDQ were digested by thrombin which cuts only actin, releasing S-1 heavy chain-actin peptide cross-linked complexes migrating on acrylamide gels with Mr 100K (EDC), 110K and 105K (GA), and 102K (EEDQ); these were fluorescent only when fluorescent S-1 was used. They were identified by immunostaining with specific antibodies directed against selected parts of he NH2-terminal actin segment of residues 1-113.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The influence of various factors on the interaction of phosphorylated and dephosphorylated myosin with actin was examined. It was found that the difference between the values of specific activity of the two myosin forms of actin-stimulated Mg2+-ATPase is affected by changes in KCl, MgATP and actin concentration. The effect of increased pH on the differences in the rate of ATP hydrolysis by actomyosin containing phosphorylated myosin as compared with that of the dephosphorylated one, observed in the presence of EGTA, is abolished by addition of Ca2+. Tropomyosin strongly inhibits the actin-stimulated Mg2+-ATPase of phosphorylated myosin (by about 60%). The tropomyosin-troponin complex and native tropomyosin lowered the rate of ATP hydrolysis by actomyosin containing both phosphorylated and dephosphorylated myosin by about of 60% of the value obtained in the absence of those proteins. These results indicate that the change of negative charge on the myosin head due to phosphorylation and dephosphorylation of myosin light chains modulates the actin-myosin interaction at different steps of the ATP hydrolysis cycle. Phosphorylation of myosin seems to be a factor decreasing the rate of ATP hydrolysis by actomyosin under physiological conditions.  相似文献   

12.
The structural consequences of MgADP binding at the vicinity of the ATPase-related thiol SH1 (Cys-707) have been examined by subjecting myosin subfragment 1, premodified at SH2 (Cys-697) with N-ethylmaleimide (NEM), to reaction with the bifunctional reagent p-phenylenedimaleimide (pPDM) in the presence and absence of MgADP. By monitoring the changes in the Ca2(+)-ATPase activity as a function of reaction time, it appears that the reagent rapidly modifies SH1 irrespective of whether MgADP is present or not. In the absence of nucleotide, only extremely low levels of cross-linking to the 50-kDa middle segment of S1 can be detected, while in the presence of MgADP substantial cross-linking to this segment is observed. A similar cross-link is also formed if MgADP is added subsequent to the reaction of the SH2-NEM-pre-modified S1 with pPDM in the absence of nucleotide. Isolation of the labeled tryptic peptide from the cross-linked adduct formed with [14C]pPDM, and subsequent partial sequence analyses, indicates that the cross-link is made from SH1 to Cys-522. Moreover, it appears that this cross-link results in the trapping of MgADP in this S1 species. These data suggest that the binding of MgADP results in a change in the structure of S1 in the vicinity of the SH1 thiol relative to the 50-kDa "domain" which enables Cys-522 to adopt the appropriate configuration to enable it to be cross-linked to SH1 by pPDM.  相似文献   

13.
A one-dimensional kinetic Ising model is developed to describe the binding of myosin subfragment 1 (SF-1) to regulated actin. The model allows for cooperative interactions between individual actin sites with bound SF-1 ligands rather than assuming that groups of actin monomer sites change their state in a cooperative fashion. With the triplet closure approximation, the model yields a set of 16 independent differential (master) equations which may be solved numerically to yield the extent of binding as a function of time. The predictions of the model are compared with experiments on the transient binding of SF-1 to regulated actin in the presence of Ca2+ and in the absence of Ca2+ with varying amounts of SF-1 prebound to the actin filament and on the equilibrium binding of SF-1 X ADP to regulated actin in the absence of Ca2+. In all cases, the calculations fit the data to within the experimental errors. In the case of SF-1 X ADP, the results suggest that a repulsive interaction exists between adjacently bound SF-1 at the ends of two neighboring seven-site actin units.  相似文献   

14.
Myosin II is a central mechanoenzyme in a wide range of cellular morphogenic processes. Its cellular localization is dependent not only on signal transduction pathways, but also on mechanical stress. We suggest that this stress-dependent distribution is the result of both the force-dependent binding to actin filaments and cooperative interactions between bound myosin heads. By assuming that the binding of myosin heads induces and/or stabilizes local conformational changes in the actin filaments that enhances myosin II binding locally, we successfully simulate the cooperative binding of myosin to actin observed experimentally. In addition, we can interpret the cooperative interactions between myosin and actin cross-linking proteins observed in cellular mechanosensation, provided that a similar mechanism operates among different proteins. Finally, we present a model that couples cooperative interactions to the assembly dynamics of myosin bipolar thick filaments and that accounts for the transient behaviors of the myosin II accumulation during mechanosensation. This mechanism is likely to be general for a range of myosin II-dependent cellular mechanosensory processes.  相似文献   

15.
The N-terminus of all actins so far studied is acetylated. Although the pathways of acetylation have been well studied, its functional importance has been unclear. A negative charge cluster in the actin N-terminal region is shown to be important for the function of actomyosin. Acetylation at the N-terminus removes a positive charge and increases the amount of net negative charges in the N-terminal region. This may augment the role of the negative charge cluster. To examine this possibility, actin with a nonacetylated N-terminus (nonacetylated actin) was produced. The nonacetylated actin polymerized and depolymerized normally. In actin-activated heavy meromyosin ATPase assays, the nonacetylated actin showed higher K(app) without significantly changing V(max), compared with those of wild-type actin. This is in contrast to the effect of the N-terminal negative charge cluster, which increases V(max) without changing K(app). These results indicate that the acetylation at the N-terminus of actin strengthens weak actomyosin interaction.  相似文献   

16.
P D Wagner 《Biochemistry》1984,23(25):5950-5956
A low-speed centrifugation assay has been used to examine the binding of myosin filaments to F-action and to regulated actin in the presence of MgATP. While the cross-linking of F-actin by myosin was Ca2+ insensitive, much less regulated actin was cross-linked by myosin in the absence of Ca2+ than in its presence. Removal of the 19000-dalton, phosphorylatable light chain from myosin resulted in the loss of this Ca2+ sensitivity. Readdition of this light chain partially restored the Ca2+-sensitive cross-linking of regulated actin by myosin. Urea gel electrophoresis has been used to distinguish that fraction of heavy meromyosin which contains intact phosphorylatable light chain from that which contains a 17000-dalton fragment of this light chain. In the absence of Ca2+, heavy meromyosin which contained digested light chain bound to regulated actin in MgATP about 10-fold more tightly than did heavy meromyosin which contained intact light chain. The regulated actin-activated ATPases of heavy meromyosin also showed that cleavage of this light chain causes a substantial increase in the affinity of heavy meromyosin for regulated actin in the absence of Ca2+. Thus, the binding of both myosin and heavy meromyosin to regulated actin is Ca2+ sensitive, and this sensitivity is dependent on the phosphorylatable light chain.  相似文献   

17.
18.
T Hiratsuka 《Biochemistry》1987,26(11):3168-3173
When myosin subfragment 1 (S-1) reacts with the bifunctional reagents with cross-linking spans of 3-4.5 A, p-nitrophenyl iodoacetate and p-nitrophenyl bromoacetate, the 20-kilodalton (20-kDa) segment of the heavy chain is cross-linked to the 26-kDa segment via the reactive thiol SH2. The well-defined reactive lysyl residue Lys-83 of the 26-kDa segment was not involved in the cross-linking. The cross-linking was completely abolished by nucleotides. Taking into account the recent report that SH2 is cross-linked to a thiol of the 50-kDa segment of S-1 using a reagent with a cross-linking span of 2 A [Chaussepied, P., Mornet, D., & Kassab, R. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 2037-2041], present results suggest that SH2 of S-1 lies close to both the 26- and 50-kDa segments of the heavy chain. The data also encourage us to confirm our previous suggestion that the ATPase site of S-1 residues at or near the region where all three segments of 26, 50, and 20 kDa are contiguous [Hiratsuka, T. (1984) J. Biochem. (Tokyo) 96, 269-272; Hiratsuka, T. (1985) J. Biochem. (Tokyo) 97, 71-78].  相似文献   

19.
A G Bruce  O C Uhlenbeck 《Biochemistry》1982,21(17):3921-3926
Thirteen different yeast tRNAPhe variants with single nucleotide changes in positions 34-37 in the anticodon region were prepared by an enzymatic procedure described previously. Aminoacylation kinetics using purified yeast phenylalanyl-tRNA synthetase revealed that the level of aminoacylation was very different for different sequences inserted. The low level of aminoacylation was the result of a steady state between a slow forward reaction rate and spontaneous deacylation of the product. Aminoacylation kinetics performed at higher synthetase concentrations revealed that substitution at position 34 in tRNAPhe decreased the Km nearly 10-fold but only had a small effect on Vmax. Similar substitutions at positions 35, 36, and 37 had a lesser effect. These data suggest a sequence-specific contact between the anticodon of yeast tRNAPhe and the cognate synthetase.  相似文献   

20.
The interaction of myosin crossbridges with actin under equilibrium conditions is reviewed. Similarities and differences between the weakly- and strongly-binding interactions of myosin crossbridges with actin filaments are discussed. A precise, narrow definition of weakly- binding crossbridges is given. It is postulated that the fundamental interaction of crossbridges with actin is that the crossbridge heads are mobile after attachment in the first case but not in the second. It is argued that because the weakly-binding crossbridge heads are mobile after attachment, the heads appear to function independently of each other. The lack of head mobility in attached strongly-binding crossbridges makes the strongly-binding crossbridge heads appear to act cooperatively. This model of the strongly-binding crossbridge gives an explanation for two important and otherwise unexplained observations. It explains why the rate constant of force decay after a small stretch is a sigmoidal function of nucleotide analogue concentration, and why, in the presence of analogues or in rigor, the rate constant of force decay after a small stretch is often significantly slower than the rate constant for myosin subfragment-1 detachment from actin in solution. The model of the weakly-binding crossbridge accurately describes the behavior of the myosin·ATP crossbridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号