首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphatidylinositol 3-kinase (PI3-K) has been implicated as a signal-transducing component in interleukin-2 (IL-2)-induced mitogenesis. However, the function of this lipid kinase in regulating IL-2-triggered downstream events has remained obscure. Using the potent and specific PI3-K inhibitor, wortmannin, we assessed the role of PI3-K in IL-2-mediated signaling and proliferation in the murine T-cell line CTLL-2. Addition of the drug to exponentially growing cells resulted in an accumulation of cells in the G0/G1 phase of the cell cycle. Furthermore, wortmannin also partially suppressed IL-2-induced S-phase entry in G1-synchronized cells. Analysis of IL-2-triggered signaling pathways revealed that wortmannin pretreatment resulted in complete inhibition of IL-2-provoked p70 S6 kinase activation and also attenuated IL-2-induced MAP kinase activation at drug concentrations identical to those required for inhibition of PI3-K catalytic activity. Wortmannin also diminished the IL-2-triggered activation of the MAP kinase activator, MEK, but did not inhibit activation of Raf, the canonical upstream activator of MEK. These results suggest that a novel wortmannin-sensitive activation pathway regulates MEK and MAP kinase in IL-2-stimulated T lymphocytes.  相似文献   

2.
Although the significance of vascular endothelial growth factor (VEGF) and its receptors in angiogenesis is well established, the signal transduction cascades activated by VEGF and their involvement in mediating the mitogenic response of endothelial cells to VEGF are incompletely characterized. Here we demonstrate that VEGF activates mitogen-activated protein (MAP) kinases, including the extracellular signal-regulated protein kinase (ERK) and p38 MAP kinase, phosphatidylinositol 3-kinase (PI 3-kinase), and p70 S6 kinase in human umbilical vein endothelial cells (HUVEC). The activation of these enzymes was assayed by kinase phosphorylation and by kinase activity towards substrates. Studies with PI 3-kinase inhibitors revealed that activation of p70 S6 kinase was mediated by PI 3-kinase. Selective inhibition of ERK, PI 3-kinase, and p70 S6 kinase with the inhibitors PD098059, LY294002, and rapamycin, respectively, inhibited VEGF-stimulated HUVEC proliferation. In marked contrast, the p38 MAP kinase inhibitor SB203580 not only failed to inhibit but actually enhanced HUVEC proliferation; this effect was associated with the phosphorylation of Rb protein. Rb phosphorylation resulted from a decrease in the level of the cdk inhibitor p27KiP1. These results indicate that the activities of ERK, PI 3-kinase, and p70 S6 kinase are essential for VEGF-induced HUVEC proliferation. p38 MAP kinase suppresses endothelial cell proliferation by regulating cell-cycle progression.  相似文献   

3.
The type 1 insulin-like growth factor receptor (IGF-IR) is a receptor-tyrosine kinase that plays a critical role in signaling cell survival and proliferation. IGF-IR binding to its ligand, insulin-like growth factor (IGF-I) activates phosphoinositide 3-kinase (PI3K), promotes cell proliferation by activating the mitogen-activated protein kinase (MAPK) cascade, and blocks apoptosis by inducing the phosphorylation and inhibition of proapoptotic proteins such as BAD. Apoptosis signal-regulating kinase 1 (ASK1) is a MAP kinase kinase kinase (MAPKKK) that is required for c-Jun N-terminal kinase (JNK) and p38 activation in response to Fas and tumor necrosis factor (TNF) receptor stimulation, and for oxidative stress- and TNFalpha-induced apoptosis. The results presented here indicate that ASK1 forms a complex with the IGF-IR and becomes phosphorylated on tyrosine residue(s) in a manner dependent on IGF-IR activity. IGF-IR signaling inhibited ASK1 irrespective of TNFalpha-induced ASK1 activation and resulted in decreased ASK1-dependent JNK1 stimulation. Signaling through IGF-IR rescued cells from ASK1-induced apoptotic cell death in a manner independent of PI3K activity. These results indicate that IGF-IR signaling suppresses the ASK-1-mediated stimulation of JNK/p38 and the induction of programmed cell death. The simultaneous activation of MAP kinases and the inhibition of the stress-activated arm of the cascade by IGF-IR may constitute a potent proliferative signaling system and is possibly a mechanism by which IGF-I can stimulate growth and inhibit cell death in a wide variety of cell types and biological settings.  相似文献   

4.
Abstract: The recently identified 17-amino acid peptide nociceptin (orphanin FQ) is the endogenous ligand for the opioid receptor-like-1 (ORL-1) receptor. A physiologic role for nociceptin (OFQ) activation of the ORL-1 receptor (OFQR) may be to modulate opioid-induced analgesia. The molecular mechanism by which nociceptin (OFQ) and ORL-1 (OFQR) modify opioid-stimulated effects, however, is unclear. Both ORL-1 (OFQR) and opioid receptors mediate pertussis toxin (PTX)-sensitive signal transduction, indicating these receptors are capable of coupling to Gi/Go proteins. This study determines that nociceptin stimulates an intracellular signaling pathway, leading to activation of mitogen-activated protein (MAP) kinase in CHO cells expressing ORL-1 receptor (OFQR). Nociceptin (OFQ)-stimulated MAP kinase activation was inhibited by PTX or by expression of the carboxyl terminus of β-adrenergic receptor kinase (βARKct), which specifically blocks Gβγ-mediated signaling. Expression of the proline-rich domain of SOS (SOS-PRO), which inhibits SOS interaction with p21ras, also attenuated nociceptin (OFQ)-stimulated MAP kinase activation. The phosphatidylinositol 3-kinase (PI-3K) inhibitors wortmannin and LY294002 reduced nociceptin (OFQ)-stimulated MAP kinase activation, whereas inhibition of protein kinase C (PKC) activity by bisindolylmaleimide I or cellular depletion of PKC had no effect. In a similar manner, in cells expressing μ-opioid receptor, [d -Ala2,N-Me-Phe4,Gly-ol]-enkephalin (DAMGO; a μ-opioid receptor-selective agonist) stimulated PTX-sensitive MAP kinase activation that was inhibited by wortmannin, LY294002, βARKct expression, or SOS-PRO expression but not affected by inhibition of PKC activity. These results indicate that both ORL-1 (OFQR) and μ-opioid receptors mediate MAP kinase activation via a signaling pathway using the βγ-subunit of Gi, a PI-3K, and SOS, independent of PKC activity. In cells expressing both ORL-1 (OFQR) and μ-opioid receptors, pretreatment with nociceptin decreased subsequent nociceptin (OFQ)- or DAMGO-stimulated MAP kinase activation. In contrast, pretreatment of cells with DAMGO decreased subsequent DAMGO-stimulated MAP kinase but had no effect on subsequent nociceptin (OFQ)-stimulated MAP kinase activation. These results demonstrate that nociceptin (OFQ) activation of ORL-1 (OFQR) can modulate μ-opioid receptor signaling in a cellular system.  相似文献   

5.
Mesangial cell proliferation is pivotal to the pathology of glomerular injury in inflammation. We have previously reported that lipoxins, endogenously produced eicosanoids with anti-inflammatory and pro-resolution bioactions, can inhibit mesangial cell proliferation in response to several agents. This process is associated with elaborate receptor cross-talk involving modification receptor tyrosine kinase phosphorylation (McMahon, B., Mitchell, D., Shattock, R., Martin, F., Brady, H. R., and Godson, C. (2002) FASEB J. 16, 1817-1819). Here we demonstrate that the lipoxin A(4) (LXA(4)) receptor is coupled to activation and recruitment of the SHP-2 (SH2 domain-containing tyrosine phosphatase-2) within a lipid raft microdomain. Using site-directed mutagenesis of the cytosolic domain of the platelet-derived growth factor receptor beta (PDGFRbeta), we report that mutation of the sites for phosphatidylinositol 3-kinase (Tyr(740) and Tyr(751)) and SHP-2 (Tyr(763) and Tyr(1009)) recruitment specifically inhibit the effect of LXA(4) on the PDGFRbeta signaling; furthermore inhibition of SHP-2 expression with short interfering RNA constructs blocked the effect of LXA(4) on PDGFRbeta phosphorylation. We demonstrate that association of the PDGFRbeta with lipid raft microdomains renders it susceptible to LXA(4)-mediated dephosphorylation by possible reactivation of oxidatively inactivated SHP-2. These data further elaborate on the potential mechanisms underlying the anti-inflammatory, proresolution, and anti-fibrotic bioactions of lipoxins.  相似文献   

6.
The various molecular forms of gastrin can act as promoters of proliferation and differentiation in different regions of the gastrointestinal tract. We report a novel stimulatory effect of glycine-extended gastrin(17) only on cell/cell dissociation and cell migration in a non-tumorigenic mouse gastric epithelial cell line (IMGE-5). In contrast, both amidated and glycine-extended gastrin(17) stimulated proliferation of IMGE-5 cells via distinct receptors. Glycine-extended gastrin(17)-induced dissociation preceded migration and was blocked by selective inhibitors of phosphatidylinositol 3-kinase (PI3-kinase) but did not require mitogen-activated protein (MAP) kinase activation. Furthermore, glycine-extended gastrin(17) induced a PI3-kinase-mediated tyrosine phosphorylation of the adherens junction protein beta-catenin, partial dissociation of the complex between beta-catenin and the transmembrane protein E-cadherin, and delocalization of beta-catenin into the cytoplasm. Long lasting activation of MAP kinases by glycine-extended gastrin(17) was specifically required for the migratory response, in contrast to the involvement of a rapid and transient MAP kinase activation in the proliferative response to both amidated and glycine-extended gastrin(17). Therefore, the time course of MAP kinase activation appears to be a critical determinant of the biological effects mediated by this pathway. Together with the involvement of PI3-kinase in the dissociation of adherens junctions, long term activation of MAP kinases seems responsible for the selectivity of this novel effect of G(17)-Gly on the adhesion and migration of gastric epithelial cells.  相似文献   

7.
Studies have implicated that lipoxinA4 (LXA4) inhibited nuclear factor-kappaB (NF-kappaB), Akt/PKB and PI 3-kinase activity and proliferation of glomerular mesangial cells. It is speculated that LXA4 might serve as pro-apoptotic factor. Rat renal interstitial fibroblasts (NRK-49F cells) were exposed to LXA4 in 5% FCS for 24 h. LXA4 at 0.1 and 1 microM induced 9.83% and 33.82% apoptosis of the cells, respectively, upregulated the expression of calpain 10 and Smac, the levels of [Ca2+]i and activity of caspase-3, and downregulated the activity of STAT3 and threonine phosphorylated Akt1. Transfection of calpain 10 or Smac antisense oligodeoxynucleotide into the cells inhibited the LXA4-induced apoptosis, activity of caspase-3. Pretreatment of the cells with calcium inhibitor SK&F96365 inhibited the LXA4-induced apoptosis, levels of [Ca2+]i, expression of calpain 10 and Smac. In conclusion, LXA4 at high concentrations induced apoptosis of renal interstitial fibroblasts via [Ca2+]i-dependent upregulation of calpain 10 and Smac expression.  相似文献   

8.
We have previously shown that interleukin (IL-)10-induced proliferation of the murine mast cell line D36, was dependent upon the activation of PI 3-kinase and p70 S6 kinase. Conversely, we were able to show that this pathway was not involved in the signal transduction pathway mediating IL-10 inhibition of pro-inflammatory cytokine release from monocytes. We have extended these studies to investigate the induction of p75 tumour necrosis factor receptor (TNF-R) shedding, another anti-inflammatory property of IL-10. Using the inhibitors of PI 3-kinase (LY294002 and wortmannin) and an inhibitor of p70 S6 kinase activation (rapamycin), we were able to show that this anti-inflammatory effect of IL-10 was not mediated by the PI 3-kinase/p70 S6 kinase pathway, indicating that another signalling cascade(s) was involved. Further studies also investigated the role of tyrosine kinases in the response to IL-10. Two distinct tyrosine kinase inhibitors, herbimycin and genistein affected the expression of TNF-R in response to IL-10 but, surprisingly, with opposite effects. However, both compounds inhibited the activation of both PI 3-kinase and p70 S6 kinase, with a concomitant inhibition of IL-10-induced proliferation. We observed that whilst tyrosine kinase activity was involved in the regulation of TNF-R expression, IL-10-induced activation of JAK kinases was not sensitive to inhibition by the tyrosine kinase inhibitors. These data suggest that multiple unknown tyrosine kinases are mediating the IL-10-induced signal transduction pathways leading to the regulation of TNF-R expression and IL-10-induced proliferation.  相似文献   

9.
In FDCP2 myeloid cells, IL-4 activated cyclic nucleotide phosphodiesterases PDE3 and PDE4, whereas IL-3, granulocyte-macrophage CSF (GM-CSF), and phorbol ester (PMA) selectively activated PDE4. IL-4 (not IL-3 or GM-CSF) induced tyrosine phosphorylation of insulin-receptor substrate-2 (IRS-2) and its association with phosphatidylinositol 3-kinase (PI3-K). TNF-alpha, AG-490 (Janus kinase inhibitor), and wortmannin (PI3-K inhibitor) inhibited activation of PDE3 and PDE4 by IL-4. TNF-alpha also blocked IL-4-induced tyrosine phosphorylation of IRS-2, but not of STAT6. AG-490 and wortmannin, not TNF-alpha, inhibited activation of PDE4 by IL-3. These results suggested that IL-4-induced activation of PDE3 and PDE4 was downstream of IRS-2/PI3-K, not STAT6, and that inhibition of tyrosine phosphorylation of IRS molecules might be one mechnism whereby TNF-alpha could selectively regulate activities of cytokines that utilized IRS proteins as signal transducers. RO31-7549 (protein kinase C (PKC) inhibitor) inhibited activation of PDE4 by PMA. IL-4, IL-3, and GM-CSF activated mitogen-activated protein (MAP) kinase and protein kinase B via PI3-K signals; PMA activated only MAP kinase via PKC signals. The MAP kinase kinase (MEK-1) inhibitor PD98059 inhibited IL-4-, IL-3-, and PMA-induced activation of MAP kinase and PDE4, but not IL-4-induced activation of PDE3. In FDCP2 cells transfected with constitutively activated MEK, MAP kinase and PDE4, not PDE3, were activated. Thus, in FDCP2 cells, PDE4 can be activated by overlapping MAP kinase-dependent pathways involving PI3-K (IL-4, IL-3, GM-CSF) or PKC (PMA), but selective activation of PDE3 by IL-4 is MAP kinase independent (but perhaps IRS-2/PI3-K dependent).  相似文献   

10.
Phosphatidylinositol (PI) 3-kinase and its downstream effector Akt are thought to be signaling intermediates that link cell surface receptors to p70 S6 kinase. We examined the effect of a G(q)-coupled receptor on PI 3-kinase/Akt signaling and p70 S6 kinase activation using Rat-1 fibroblasts stably expressing the human alpha(1A)-adrenergic receptor. Treatment of the cells with phenylephrine, a specific alpha(1)-adrenergic receptor agonist, activated p70 S6 kinase but did not activate PI 3-kinase or any of the three known isoforms of Akt. Furthermore, phenylephrine blocked the insulin-like growth factor-I (IGF-I)-induced activation of PI 3-kinase and the phosphorylation and activation of Akt-1. The effect of phenylephrine was not confined to signaling pathways that include insulin receptor substrate-1, as the alpha(1)-adrenergic receptor agonist also inhibited the platelet-derived growth factor-induced activation of PI 3-kinase and Akt-1. Although increasing the intracellular Ca(2+) concentration with the ionophore A23187 inhibited the activation of Akt-1 by IGF-I, Ca(2+) does not appear to play a role in the phenylephrine-mediated inhibition of the PI 3-kinase/Akt pathway. The differential ability of phenylephrine and IGF-I to activate Akt-1 resulted in a differential ability to protect cells from UV-induced apoptosis. These results demonstrate that activation of p70 S6 kinase by the alpha(1A)-adrenergic receptor in Rat-1 fibroblasts occurs in the absence of PI 3-kinase/Akt signaling. Furthermore, this receptor negatively regulates the PI 3-kinase/Akt pathway, resulting in enhanced cell death following apoptotic insult.  相似文献   

11.
We demonstrated previously that leukotriene D4 (LTD4) regulates proliferation of intestinal epithelial cells through a CysLT receptor by protein kinase C (PKC)epsilon-dependent stimulation of the mitogen-activated protein kinase ERK1/2. Our current study provides the first evidence that LTD4 can activate 90-kDa ribosomal S6 kinase (p90RSK) and cAMP-responsive element-binding protein (CREB) via pertussis-toxin-sensitive Gi protein pathways. Transfection and inhibitor experiments revealed that activation of p90RSK, but not CREB, is a PKCepsilon/Raf-1/ERK1/2-dependent process. LTD4-mediated CREB activation was not affected by expression of kinase-dead p90RSK but was abolished by transfection with the regulatory domain of PKCalpha (a specific dominant-inhibitor of PKCalpha). Kinase-negative mutants of p90RSK and CREB (K-p90RSK and K-CREB) blocked the LTD4-induced increase in cell number and DNA synthesis (thymidine incorporation). Compatible with these results, flow cytometry showed that LTD4 caused transition from the G0/G1 to the S+G2/M cell cycle phase, indicating increased proliferation. Similar treatment of cells transfected with K-p90RSK resulted in cell cycle arrest in the G0/G1 phase, consistent with a role of p90RSK in LTD4-induced proliferation. On the other hand, expression of K-CREB caused a substantial buildup in the sub-G0/G1 phase, suggesting a role for CREB in mediating LTD4-mediated survival in intestinal epithelial cells. Our results show that LTD4 regulates proliferation and survival via distinct intracellular signaling pathways in intestinal epithelial cells.  相似文献   

12.
We previously showed in rat renal glomerular mesangial cells, that arginine vasopressin (AVP)-stimulated cell proliferation was mediated by epidermal growth factor receptor (EGF-R) transactivation, and activation (phosphorylation) of ERK1/2 and p70S6 kinase (Ghosh et al. [2001]: Am J Physiol Renal Physiol 280:F972-F979]. In this paper, we extend these observations and show that different protein kinase C (PKC) isoforms play different roles in mediating AVP-stimulated ERK1/2 and p70S6 kinase phosphorylation and cell proliferation. AVP treatment for 0-60 min stimulated the serine/threonine phosphorylation of PKC isoforms alpha, delta, epsilon, and zeta. The activation of PKC was dependent on EGF-R and phosphatidylinositol 3-kinase (PI3K) activation. In addition, inhibition of conventional and novel PKC isoforms by chronic (24 h) exposure to phorbol 12-myristate 13-acetate (PMA) inhibited AVP-induced activation of ERK and p70S6 kinase as well as EGF-R phosphorylation. Rottlerin, a specific inhibitor of PKCdelta, inhibited both ERK and p70S6 kinase phosphorylation and cell proliferation. In contrast, a PKCepsilon translocation inhibitor decreased ERK1/2 activation without affecting p70S6 kinase or cell proliferation, while a dominant negative PKCzeta (K281W) cDNA delayed p70S6 kinase activation without affecting ERK1/2. On the other hand, G?6976, an inhibitor of conventional PKC isoforms, did not affect p70S6 kinase, but stimulated ERK1/2 phosphorylation without affecting cell proliferation. Our results indicate that PKCdelta plays an important role in AVP-stimulated ERK and p70S6 kinase activation and cell proliferation.  相似文献   

13.
14.
We previously reported that p70 S6 kinase takes part in bone morphogenetic protein-4 (BMP-4)-stimulated vascular endothelial growth factor (VEGF) synthesis in osteoblast-like MC3T3-E1 cells. Recently, we showed that BMP-4-induced osteocalcin synthesis is regulated by p44/p42 MAP kinase and p38 MAP kinase in these cells. In the present study, we investigated whether the MAP kinases are involved in the BMP-4-stimulated synthesis of VEGF in MC3T3-E1 cells. PD-98059 and U-0126, inhibitors of the upstream kinase of p44/p42 MAP kinase, failed to affect BMP-4-stimulated VEGF synthesis. SB-203580 and PD-169316, inhibitors of p38 MAP kinase, significantly reduced VEGF synthesis, whereas SB-202474, a negative control for p38 MAP kinase inhibitor, had little effect on VEGF synthesis. The BMP-4-stimulated phosphorylation of p38 MAP kinase was not affected by rapamycin, an inhibitor of p70 S6 kinase. On the contrary, SB-203580 and PD-169316 reduced the BMP-4-stimulated phosphorylation of p70 S6 kinase. In addition, anisomycin, an activator of p38 MAP kinase, phosphorylates p70 S6 kinase, and the phosphorylation was suppressed by SB-203580. LY-294002, an inhibitor of phosphatidylinositol 3-kinase, failed to suppress the phosphorylation of p38 MAP kinase induced by BMP-4. Not BMP-4 but anisomycin weakly induced the phosphorylation of phosphoinositide-dependent kinase-1. However, anisomycin had little effect on phosphorylation of either Akt or the mammalian target of rapamycin. Taken together, our results suggest that p38 MAP kinase functions in BMP-4-stimulated VEGF synthesis as a positive regulator at a point upstream from p70 S6 kinase in osteoblasts.  相似文献   

15.
Colony-stimulating factor 1 (CSF-1) supports the proliferation, survival, and differentiation of bone marrow-derived cells of the monocytic lineage. In the myeloid progenitor 32D cell line expressing CSF-1 receptor (CSF-1R), CSF-1 activation of the extracellular signal-regulated kinase (ERK) pathway is both Ras and phosphatidylinositol 3-kinase (PI3-kinase) dependent. PI3-kinase inhibition did not influence events leading to Ras activation. Using the activity of the PI3-kinase effector, Akt, as readout, studies with dominant-negative and oncogenic Ras failed to place PI3-kinase downstream of Ras. Thus, PI3-kinase appears to act in parallel to Ras. PI3-kinase inhibitors enhanced CSF-1-stimulated A-Raf and c-Raf-1 activities, and dominant-negative A-Raf but not dominant-negative c-Raf-1 reduced CSF-1-provoked ERK activation, suggesting that A-Raf mediates a part of the stimulatory signal from Ras to MEK/ERK, acting in parallel to PI3-kinase. Unexpectedly, a CSF-1R lacking the PI3-kinase binding site (DeltaKI) remained capable of activating MEK/ERK in a PI3-kinase-dependent manner. To determine if Src family kinases (SFKs) are involved, we demonstrated that CSF-1 activated Fyn and Lyn in cells expressing wild-type (WT) or DeltaKI receptors. Moreover, CSF-1-induced Akt activity in cells expressing DeltaKI is SFK dependent since Akt activation was prevented by pharmacological or genetic inhibition of SFK activity. The docking protein Gab2 may link SFK to PI3-kinase. CSF-1 induced Gab2 tyrosyl phosphorylation and association with PI3-kinase in cells expressing WT or DeltaKI receptors. However, only in DeltaKI cells are these events prevented by PP1. Thus in myeloid progenitors, CSF-1 can activate the PI3-kinase/Akt pathway by at least two mechanisms, one involving direct receptor binding and one involving SFKs.  相似文献   

16.
The paradigm for activation of Ras and extracellular signal-regulated kinase (ERK)/mitogen-activated protein (MAP) kinase by extracellular stimuli via tyrosine kinases, Shc, Grb2, and Sos does not encompass an obvious role for phosphoinositide (PI) 3-kinase, and yet inhibitors of this lipid kinase family have been shown to block the ERK/MAP kinase signalling pathway under certain circumstances. Here we show that in COS cells activation of both endogenous ERK2 and Ras by low, but not high, concentrations of epidermal growth factor (EGF) is suppressed by PI 3-kinase inhibitors; since Ras activation is less susceptible than ERK2 activation, PI 3-kinase-sensitive events may occur both upstream of Ras and between Ras and ERK2. However, strong elevation of PI 3-kinase lipid product levels by expression of membrane-targeted p110alpha is by itself never sufficient to activate Ras or ERK2. PI 3-kinase inhibition does not affect EGF-induced receptor autophosphorylation or adapter protein phosphorylation or complex formation. The concentrations of EGF for which PI 3-kinase inhibitors block Ras activation induce formation of Shc-Grb2 complexes but not detectable EGF receptor phosphorylation and do not activate PI 3-kinase. The activation of Ras by low, but mitogenic, concentrations of EGF is therefore dependent on basal, rather than stimulated, PI 3-kinase activity; the inhibitory effects of LY294002 and wortmannin are due to their ability to reduce the activity of PI 3-kinase to below the level in a quiescent cell and reflect a permissive rather than an upstream regulatory role for PI 3-kinase in Ras activation in this system.  相似文献   

17.
Inflammatory bowel diseases are associated with increased risk of developing colon cancer. A possible role of the pro-inflammatory leukotriene D4 (LTD4) in this process has been implicated by the findings that LTD4 can signal increased proliferation and survival, both hallmarks of a cancer cell, in non-transformed intestinal epithelial cells. Here we make the novel finding that LTD4 can also signal increased motility in these cells. In parallel, we found that LTD4 induced a simultaneous transient 10-fold increase in Rac but not Cdc42 activity. These data were also supported by the ability of LTD4 to activate the Rac GDP/GTP exchange factor Vav2. Further, LTD4 triggered a 3-fold transient increase in phosphatidylinositol 3-kinase (PI3K) phosphorylation, a possible upstream activator of the Vav2/Rac signaling pathway. The activation of Rac was blocked by the PI3K inhibitors LY294002 and wortmannin and by transfection of a kinase-negative mutant of PI3K or a dominant-negative form of Vav2. Furthermore, Rac was found to co-localize with actin in LTD4-generated membrane ruffles that were formed by a PI3K-dependent mechanism. In accordance, the inhibition of the PI3K and Rac signaling pathway also blocked the LTD4-induced migration of the intestinal cells. The present data reveal that an inflammatory mediator such as LTD4 cannot only increase proliferation and survival of non-transformed intestinal epithelial cells but also, via a PI3K/Rac signaling pathway, trigger a motile response in such cells. These data demonstrate the capacity of inflammatory mediators to participate in the process by which inflammatory bowel conditions increase the risk for colon cancer development.  相似文献   

18.
Kong L  Ge BX 《Cell research》2008,18(7):745-755
Phagocytosis and subsequent degradation of pathogens by macrophages play a pivotal role in host innate immune responses to microbial infection. Recent studies have shown that Toll-like receptors (TLRs) play an important role in promoting the clearance of bacteria by up-regulating the phagocytic activity of macrophages. However, information regarding the signaling mechanism of TLR-mediated phagocytosis is still limited. Here, we provide evidence that the stimulation of TLR4 with LPS leads to activation of multiple signaling pathways including MAP kinases, phosphatidylinositide 3-kinase (PI3K), and small GTPases in the murine macrophage-like cell line RAW264.7. Specific inhibition of Cdc42/Rac or p38 MAP kinase, but not PI3K, reduced TLR4-induced phagocytosis of bacteria. Moreover, we have found that either inhibition of actin polymerization by cytochalasin D or the knockdown of actin by RNAi markedly reduced the activation of Cdc42 and Rac by LPS. TLR4-induced activation of Cdc42 and Rac appears to be independent of MyD88. Taken together, our results described a novel actin-Cdc42/Rac pathway through which TLRs can specifically provoke phagocytosis.  相似文献   

19.
Macrophage-derived chemokine (MDC/CC chemokine ligand 22 (CCL22)) mediates its cellular effects principally by binding to its receptor CCR4, and together they constitute a multifunctional chemokine/receptor system with homeostatic and inflammatory roles in the body. We report the CCL22-induced accumulation of phosphatidylinositol-(3,4,5)-trisphosphate (PI(3,4,5)P(3)) in the leukemic T cell line CEM. CCL22 also had the ability to chemoattract human Th2 cells and CEM cells in a pertussis toxin-sensitive manner. Although the PI(3,4,5)P(3) accumulation along with the pertussis toxin-susceptible phosphorylation of protein kinase B were sensitive to the two phosphoinositide 3-kinase inhibitors, LY294002 and wortmannin, cell migration was unaffected. However, cell migration was abrogated with the Rho-dependent kinase inhibitor, Y-27632. These data demonstrate that although there is PI(3,4,5)P(3) accumulation downstream of CCR4, phosphoinositide 3-kinase activity is a dispensable signal for CCR4-stimulated chemotaxis of Th2 cells and the CEM T cell line.  相似文献   

20.
The pleiotropic effects of the Kit receptor system are mediated by Kit-Ligand (KL) induced receptor autophosphorylation and its association with and activation of distinct second messengers, including phosphatidylinositol 3'-kinase (PI3-kinase), p21ras and mitogen-activated protein kinase (MAPK). To define the role of PI3-kinase, p21ras and MAPK in Kit-mediated cell proliferation, survival and adhesion in bone marrow-derived mast cells (BMMC), mutant Kit receptors were expressed in Wsh/Wsh BMMC lacking endogenous c-kit expression. The introduction of both murine Kit(S) and KitL (isoform containing a four amino acid insert) into Wsh/Wsh BMMC restored KL-induced proliferation, survival and adhesion to fibronectin, as well as activation of PI3-kinase, p21ras and MAPK, and induced expression of c-fos, junB, c-myc and c-myb mRNA. Substitution of tyrosine 719 in the kinase insert with phenylalanine (Y719F) abolished PI3-kinase activation, diminished c-fos and junB induction, and impaired KL-induced adhesion of BMMC to fibronectin. In addition, the Y719F mutation had partial effects on p21ras activation, cell proliferation and survival, while MAP kinase activation was not affected. On the other hand, Y821F substitution impaired proliferation and survival without affecting PI3-kinase, p21ras and MAPK activation, and induction of c-myc, c-myb, c-fos and c-jun mRNA, while KL-induced cell adhesion to fibronectin remained intact. In agreement with a role for PI3-kinase in Kit-mediated cell adhesion, wortmannin blocked Kit-mediated cell adhesion at concentrations known to specifically inhibit PI3-kinase. We conclude, that association of Kit with p85PI3-K, and thus with PI3-kinase activity, is necessary for a full mitogenic as well as adhesive response in mast cells. In contrast, tyrosine 821 is essential for Kit-mediated mitogenesis and survival, but not cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号