首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Bacteriophage P1 encodes several regulatory elements for the lytic or lysogenic response, which are located in the immC, immI, and immT regions. Their products are the C1 repressor of lytic functions with the C1 inactivator protein Coi, the C4 repressor of antirepressor synthesis and the modulator protein Bof, respectively. We have studied in vitro the interaction of the components of the immC and immT regions with C1-controlled operators using highly purified Bof, C1, and Coi proteins. Bof protein (M(r) = 9,800) does not interact with C1 repressor alone, but as shown by DNA mobility shift experiments, in the presence of C1 repressor Bof binds to all operators tested by forming a C1.Bof-operator DNA ternary complex. The effect of this complex formation was studied in more detail with the operator of the c1 gene. Here, Bof only marginally alters the C1 repressor footprint at Op99a,b, but nevertheless considerably influences the repressibility of the operator.promoter element: (i) the autoregulated c1 mRNA synthesis is further down-regulated and (ii) the ability of Coi protein to dissociate the C1.operator DNA complex is strongly inhibited. We suggest that Bof protein functions by modulating C1 repression of many widely dispersed operators on the prophage genome.  相似文献   

2.
3.
The temperate phage P1 encodes two genes whose products antagonize the action of the phage's C1 repressor of lytic functions, namely a distantly linked antirepressor gene, ant, and a closely linked c1 inactivator gene, coi. Starting with an inducible coi-recombinant plasmid, Coi protein was overproduced and purified to near homogeneity. By using a DNA mobility shift assay we demonstrate that Coi protein inhibits the operator binding of the C1 repressors of the closely related P1 and P7 phages. Coi protein (Mr = 7,600) exerts its C1-inactivating function by forming a complex with the C1 repressor (Mr = 32,500) at a molar ratio of about 1:1, as shown by density gradient centrifugation and gel filtration. C1 repressor and Coi protein are recovered in active form from the complex, suggesting that noncovalent interactions are the sole requirements for complex formation. The interplay of repressor and antagonists operating in the life cycle of P1 is discussed.  相似文献   

4.
Bacteriophage P1 encodes a tripartite immunity system composed of the immC, immI, and immT region. Their basic genetic elements are the c1 repressor of lytic functions, the c4 repressor which negatively regulates antirepressor synthesis, and the bof gene, respectively. The function of the latter will be described here. We have cloned and sequenced the bof gene from P1 wild type and a P1 bof amber mutant. Based on the position of a TAG codon of the bof amber mutant the bof wild type gene was localized. It starts with a TTG codon, comprises 82 codons, and is preceded by a promoter structure. The bof protein (Mr = 7500) was overproduced in Escherichia coli from a bof recombinant plasmid and was purified to near homogeneity. The N-terminal amino acids predicted from the DNA sequence of the bof gene were confirmed by sequence analysis of the bof protein. Using a DNA mobility shift assay, we show that bof protein enhances the binding of c1 repressor to the operator of the c1 gene. In accordance with this result, in transformants of Escherichia coli, containing both a bof- and a c1-encoding plasmid, c1 expression is down-regulated. We conclude that bof acts as a modulator protein in the repression of a multitude of c1-controlled operators in the P1 genome.  相似文献   

5.
The c1 repressor gene of bacteriophage P1 and the temperature-sensitive mutants P1c1.100 and P1c1.162 was cloned into an expression vector and the repressor proteins were overproduced. A rapid purification procedure was required for the isolation of the thermolabile repressor proteins. Identification of the highly purified protein of an apparent molecular weight of 33,000 as the product of the c1 gene was verified by (i) the coincidence of partial amino acid sequences determined experimentally to that deduced from the c1 DNA sequence, and (ii) the temperature-sensitive binding to the operator DNA of the thermolabile repressor proteins. Analysis of the products of c1-c1.100 recombinant DNAs relates the thermolability to an unknown alteration in the C-terminal half of the c1.100 repressor. Binding to the operator DNA of c1 repressor is sensitive to N-ethylmaleimide. Since the only three cysteine residues are located in the C-terminal half of the repressor it is suggested that this part of the molecule is important for the binding to the operator DNA. This assumption is supported by the findings that a 14-kDa C-terminal repressor fragment obtained by cyanogen bromide cleavage retains DNA binding properties.  相似文献   

6.
The C1 repressor of bacteriophage P1 acts via 14 or more distinct operators. This repressor represses its own synthesis as well as the synthesis of other gene products. Previously, mutation of an auxiliary regulatory gene, bof, has been shown to increase expression of some C1-regulated P1 genes (e.g., ref) but to decrease expression of others (e.g., ban). In this study the bof gene was isolated on the basis of its ability to depress stimulation of Escherichia coli chromosomal recombination by the P1 ref gene, if and only if a source of C1 was present. C1 alone, but not Bof alone, was partially effective. The bofDNA sequence encodes an 82-codon reading frame that begins with a TTG codon and includes the sites of the bof-1(Am) mutation and a bof::Tn5 null mutation. Expression of ref::lacZ and cl::lacZ fusion genes was partially repressed in trans by a P1 bof-1 prophage or by plasmid-encoded C1 alone, which was in agreement with effects on Ref-stimulated recombination and with previous indirect evidence for c1 autoregulation. Repression of both fusion genes by plasmid-encoded C1 plus Bof or by a P1 bof+ prophage was more complete. When the C1 source also included a 0.7-kilobase region upstream from C1 which encodes the coi gene, repression of both c1::lacZ and ref::lacZ by C1 alone or by C1 plus Bof was much less effective, as if Coi interfered with C1 repressor function.  相似文献   

7.
The tripartite immunity system of phages P1 and P7   总被引:8,自引:0,他引:8  
Abstract: Prophages P1 and P7 exist as unit copy DNA plasmids in the bacterial cell. Maintenance of the prophage state requires the continuous expression of two repressors: (i) C1 is a protein which negatively regulates the expression of lytic genes including the C1 inactivator gene coi , and (ii) C4 is an antisense RNA which specifically inhibits the synthesis of an anti-repressor Ant. In addition, C1 repression is strengthened by lxc encoding an auxiliary repressor protein. The repressors C1, C4 and Lxc are components of a tripartite immunity system of the two phages. Here, the mode of action of these regulatory components including their antagonists Coi and Ant is described.  相似文献   

8.
The repressor of bacteriophage P1, encoded by the c1 gene, is responsible for maintaining a P1 prophage in the lysogenic state. In this paper we present: (1) the sequence of the rightmost 943 base-pairs of the P1 genetic map that includes the 5'-terminal 224 base-pairs of the c1 gene plus its upstream region; (2) the construction of a plasmid that directs the production of approximately 5% of the cell's protein as P1 repressor; (3) a deletion analysis that establishes the startpoint of P1 repressor translation; (4) filter binding experiments that demonstrate that P1 repressor binds to several regions upstream from the c1 gene; (5) DNase I footprint experiments that directly identify two of the P1 repressor binding sites. Sequences very similar to the identified binding sites occur in at least 11 sites in P1, in most cases near functions known, or likely, to be controlled by repressor. From these sites we have derived the consensus binding site sequence ATTGCTCTAATAAATTT. We suggest that, unlike other phage operators, the P1 repressor binding sites lack rotational symmetry.  相似文献   

9.
10.
11.
12.
13.
Summary P1 infected minicells synthesize approximately 50 phage-encoded polypeptides. Phage expression is temporally controlled, demonstrating phage polypeptides synthesized both early and late after infection. The P1 repressor, gpc1 1 (Mr=33,000), repressor bypass polypeptide, gprebA (Mr=27,500) and cistron 10 product, (gp10) (Mr=64,000), have been identified by infection of minicells with P1 amber mutants. The beta-lactamase gene product (gpbla) carried by the closely related phage P7 and the chloramphenicol acetyl-transferase gene product (gpcat) carried by P1 Cm (in Tn9) have been demonstrated. Infection of minicells by P1vir s or P1c4 mutants results in increased synthesis of gprebA and a second polypeptide designated gprebB (Mr=40,000). The P1vir11 mutation leads to increased synthesis of a small polypeptide (Mr=3,500) but does not affect the amount of gpc1 synthesized.  相似文献   

14.
15.
16.
17.
18.
19.
20.
A bacteriophage P1-specific DNA binding protein has been partially purified from P1-infected Escherichia coli and identified as the P1c1 repressor. This protein is absent from non-suppressing cells infected with a P1c1 amber mutant. The binding activity of the protein isolated from cells infected with a c1ts mutant is thermolabile in vitro, so the repressor protein is the product of the c1 gene. Studies on P1 DNA fragments generated by restriction endonuclease digestion indicate that the c1 repressor binds preferentially in vitro at a site or sites located close to the c1 gene itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号