首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carotenoids are pigments synthesised by autotrophic organisms. For nestlings of raptorial species, which obtain carotenoids from the consumption of other heterotrophic species, the access to these pigments can be crucial. Carotenoids, indeed, have fundamental health maintenance functions, especially important in developing individuals as nestling kestrels. The aim of this study was to investigate how body carotenoid levels and skin pigmentation vary in kestrel nestlings (Falco tinnunculus) in relation to nesting parameters. Furthermore, we experimentally altered carotenoid availability (short- medium- and long-term) for nestlings and investigated skin and serum variance. The skin colour variance of 151 nestlings was explained by nest of origin, age and by the body condition (body mass corrected by age), older nestlings with higher body condition being redder. No difference in skin colour was detected between sexes. Differences in hue (skin “redness”) between treatments did not emerge during the first week, but did occur 15 days after administration between long-term supplemented and control chicks. In contrast, the serum carotenoid concentration showed a treatment-dependent increase after 5 days from the first carotenoid administration and at least after two supplemented feedings. In general, hue but not serum carotenoids, was correlated with the body condition of nestlings. Based on the increased skin pigmentation of nestling kestrels in the long-term experimental group, we suggest carotenoid availability to be limited for colour expression. The small increase of serum carotenoids due to supplementation is consistent with the hypothesis that there is a physiological constraint on these pigments, as well as an environmental limitation. The presented results are useful for the understanding of carotenoid uptake and accumulation by a wild raptorial species, located at the top of the food web, highlighting that carotenoids are a limited resource for kestrel nestlings.  相似文献   

2.
ABSTRACT.   Maternally deposited carotenoids are a prominent component of egg yolk and are vital for the development and growth of the embryo. In most studies of avian yolk carotenoids, eggs are destructively sampled and this may limit both the number of clutches studied and the research questions addressed. We describe an empirical field trial for a nondestructive biopsy method to extract small samples (0.05 ml) of egg yolk for high-performance liquid chromatography (HPLC) analysis of yolk carotenoid concentrations. We sampled 180 clutches ( N = 44 biopsies) of two species of introduced thrushes (genus Turdus ) from agricultural habitats in central North Island, New Zealand. Once the protocol was established, all biopsied eggs from clutches that were not depredated or deserted before candling were found to be developing normally after 3–5 d of incubation ( N = 28) and all hatched. Biopsy samples (>0.02 g) produced concentrations of yolk carotenoids (and variances) that were statistically indistinguishable from whole yolk destructive samples. In addition, our samples (>0.02 g) confirmed previously reported differences in yolk carotenoid concentrations between the two thrush species and revealed a significant decline in yolk carotenoid concentration with laying order. Further examination of how variability in yolk carotenoid concentration and identity influences offspring sex, success, and survival or, later in life, reproductive success and ability to efficiently incorporate dietary carotenoids into both integument and immune tissues will require larger sample sizes. Studies to date have been restricted by the number of destructive samples that investigators are willing (or permitted) to obtain from wild species. Thus, we hope that our nondestructive method of sampling yolk will promote further examination of the links between carotenoid uptake from the environment and maternal investment in the avian yolk.  相似文献   

3.
Many birds use carotenoid pigments to acquire rich red, orange, and yellow coloration in feathers and bare parts that is used as a signal of mate quality. Because carotenoids are derived from foods, much attention has been paid to the role of diet in generating color variation both within and among avian species. Less consideration has been given to physiological underpinnings of color variability, especially among species. Here, I surveyed published literature (e.g. captive feeding studies) on carotenoid assimilation in six bird species and completed additional controlled carotenoid-supplementation experiments in two others to consider the ability of different taxa to extract carotenoids from the diet in relation to phylogeny and coloration. I found that, for a given level of carotenoids in the diet, passerine birds (zebra finch, Taeniopygia guttata; house finch, Carpodacus mexicanus; American goldfinch, Carduelis tristis; society finch, Lonchura domestica) exhibit higher levels of carotenoids in circulation than non-passerines like gamebirds (domestic chicken, Gallus domesticus; red junglefowl, Gallus gallus; Japanese quail, Coturnix coturnix; red-legged partridge, Alectoris rufa). This difference in carotenoid accumulation is likely due to interspecific variation in micelle, chylomicron, or lipoprotein concentrations or affinities for xanthophyll carotenoids. Passerine birds more commonly develop carotenoid-based colors than do birds from ancient avian lineages such as Galliformes, and the physiological differences I uncover may explain why songbirds especially capitalize on carotenoid pigments for color production. Ultimately, because we can deconstruct color traits into component biochemical, physical, and physiological parts, avian color signals may serve as a valuable model for illuminating the proximate mechanisms behind interspecific variation in signal use in animals.  相似文献   

4.
Chromatophores and peripheral light-harvesting complexes B800–850 with a trace of carotenoids were isolated from Chromatium minutissimum cells in which carotenoid biosynthesis was inhibited by diphenylamine. Three methods previously used for the reconstitution of carotenoids into either the light-harvesting (LH1) type complexes or reaction centers (RC) of carotenoidless mutants were examined for the possibility of carotenoid reconstitution into the carotenoid depleted chromatophores. All these methods were found to be unsuitable because carotenoid depleted complex B800–850 from Chr. minutissimum is characterized by high lability. We have developed a novel method maintaining the native structure of the complexes and allowing reconstitution of up to 80% of the carotenoids as compared to the control. The reconstituted complex has a similar CD spectrum in the carotenoid region as the control, and its structure restores its stability. These data give direct proof for the structural role of carotenoids in bacterial photosynthesis.  相似文献   

5.
The carotenoids of unialgal cultures originating from symbiotic zooxanthellae of two molluscan (Tridacna crocea, a giant clam, and Pteraeolidia ianthine a nudibranch) and one cnidian (Pseudopterogorgia bipinnata, a gorgonian coral) host have been analysed by HPLC or TLC procedures combined with several spectroscopic techniques including MS and NMR. A high total carotenoid content (0.45-0.63% of the dry wt) was obtained. The carotenoid pattern with C37-norcarotenoids (peridinin and pyrrhoxanthin) comprising around 80% of total carotenoids, and β,β-carotene (2%), the ailenic dinoxanthin (3–4%) and the acetylenic diatoxanthin (1–3%) and diadinoxanthin (7–9%) representing minor C40-carotenoids, corresponds to that of peridinin-producing free-living dinoflagellates. Supplementary 1H NMR and 13C NMR data are reported for peridinin and pyrrhoxanthin. A polar, minor carotenoid, P447, was partly characterized as containing a disaccharide glycosidically bound to an allenic carotenoid aglycone. Re-evaluation of previous reports suggests the wide-spread occurrence of related carotenoid disaccharides in Dinophyceae for which they are considered a new chemosystematic marker.  相似文献   

6.
In the animal kingdom, species-specific differences with regard to the absorption of intact carotenoids are observed. The causes of these differences are not entirely understood. To investigate the absorption of selected carotenoids, 20 juvenile green iguanas (Iguana iguana) were fed a carotenoid deficient basal diet for 56 days. Thereafter, the iguanas were assigned to receive a basal diet supplemented with different carotenoids (80 mg/kg diet) such as beta-carotene, canthaxanthin and apo-8'-carotenoic acid ethyl ester for 28 days. Changes in plasma carotinoid concentrations associated with the individual diets were used as indicators of carotenoid absorption. In both the experimental and control groups, only the oxygenated carotenoids (xanthophylls), lutein, zeaxanthin and canthaxanthin, were found in the plasma. Canthaxanthin and apo-8'-carotenoic acid ethyl ester were readily absorbed and recovered from the plasma. However, the supplementation of beta-carotene caused no increase in plasma beta-carotene concentration. Additionally, beta-carotene, canthaxanthin or apo-8'-carotenoic acid ethyl ester did not affect the concentrations of retinol and alpha-tocopherol in plasma. In conclusion, the study demonstrates that iguanas appear to be selective accumulators of polar xanthophylls. The iguana might, therefore, be a valuable model to investigate the selectiveness of carotenoid absorption as well as the function of xanthophylls in animals.  相似文献   

7.
Phototrophic bacteria necessarily contain carotenoids for photosynthesis, and a few phototrophic purple bacteria accumulate unusual carotenoids. The carotenoids in the genera Phaeospirillum and Roseospira were identified using spectroscopic methods. All species of the genus Phaeospirillum contained characteristic polar carotenoids in addition to lycopene and hydroxylycopene (rhodopin); hydroxylycopene glucoside, dihydroxylycopene, and its mono- and/or diglucosides. From the structures of these carotenoids, their accumulation was suggested to be due to absence of CrtD (acyclic carotenoid C-3,4 desaturase) and to possession of glucosyltransferase. Species of the genus Roseospira have been reported to have unusual absorption spectra in acetone extract, and they were found to accumulate 3,4-didehydrorhodopin as a major carotenoid. This may be due to low activity of CrtF (acyclic 1-hydroxycarotenoid methyltransferase). The study concludes in identifying genus specific unusual carotenoids, which is probably due to characteristic nature of some carotenogenesis enzymes.  相似文献   

8.
The chlorophylls and carotenoids of 22 species of dinoflagellates were analysed by thin layer chromatography, using 2-dimensional sucrose plates, and 1-dimensional polyethylene plates for chlorophylls c1 and c2. Peridinin was the major carotenoid in 19 of the species, while fucoxanthin was the major carotenoid in 3. In the peridinin-containing species, 5 carotenoid fractions, constituting more than 95% of the total carotenoids, were always present. These were peridinin (± neo-peridinin), averaging 64% of the total carotenoid, diadinoxanthin, dinoxanthin, β-carotene and a polar, unidentified pink xanthophyll. Six other carotenoid fractions occurred in minor or trace quantities among the species, but were not identified. Two of these had, a wide distribution; the other 4 were restricted to one or 2 species. The chlorophyll content of the dinoflagellate cultures ranged from 1–141 μg chlorophyll a + c/106 cells, a pattern which was broadly correlated with cell size. In the peridinin-containing species the ratio of chlorophyll a to c on a molar basis was approximately 2 (range 1.60–4.39); in the fucoxanthin-containing species this ratio was approximately 4 (range 2.65–5.73). Both chlorophylls c1 and c2 occurred in the fucoxanthin-containing dinoflagellates, and only chlorophyll c2 (one exception) occurred in the peridinin-containing dinoflagellates. These patterns of chlorophyll c and major carotenoid correspond to patterns previously observed in the Pyrrhophyta and the Chrysophyta, suggesting different phylogenetic origins for the “dinoflagellate” chloroplasts.  相似文献   

9.
The broad palette of feather colours displayed by birds serves diverse biological functions, including communication and camouflage. Fossil feathers provide evidence that some avian colours, like black and brown melanins, have existed for at least 160 million years (Myr), but no traces of bright carotenoid pigments in ancient feathers have been reported. Insight into the evolutionary history of plumage carotenoids may instead be gained from living species. We visually surveyed modern birds for carotenoid-consistent plumage colours (present in 2956 of 9993 species). We then used high-performance liquid chromatography and Raman spectroscopy to chemically assess the family-level distribution of plumage carotenoids, confirming their presence in 95 of 236 extant bird families (only 36 family-level occurrences had been confirmed previously). Using our data for all modern birds, we modelled the evolutionary history of carotenoid-consistent plumage colours on recent supertrees. Results support multiple independent origins of carotenoid plumage pigmentation in 13 orders, including six orders without previous reports of plumage carotenoids. Based on time calibrations from the supertree, the number of avian families displaying plumage carotenoids increased throughout the Cenozoic, and most plumage carotenoid originations occurred after the Miocene Epoch (23 Myr). The earliest origination of plumage carotenoids was reconstructed within Passeriformes, during the Palaeocene Epoch (66–56 Myr), and not at the base of crown-lineage birds.  相似文献   

10.
Free radical intermediates were detected by the electron paramagnetic resonance spin trapping technique upon protonation/deprotonation reactions of carotenoid and beta-ionone radical ions. The hyperfine coupling constants of their spin adducts obtained by spectral simulation indicate that carbon-centered radicals were trapped. The formation of these species was shown to be a result of chemical oxidation of neutral compounds by Fe(3+) or I(2) followed by deprotonation of the corresponding radical cations or addition of nucleophilic agents to them. Bulk electrolysis reduction of beta-ionone and carotenoids also leads to the formation of free radicals via protonation of the radical anions. Two different spin adducts were detected in the reaction of carotenoid polyenes with piperidine in the presence of 2-methyl-2-nitroso-propane (MNP). One is attributable to piperidine radicals (C(5)H(10)N*) trapped by MNP and the other was identified as trapped neutral carotenoid (beta-ionone) radical produced via protonation of the radical anion. Formation of these radical anions was confirmed by ultraviolet-visible spectroscopy. It was found that the ability of carotenoid radical anions/cations to produce neutral radicals via protonation/deprotonation is more pronounced for unsymmetrical carotenoids with terminal electron-withdrawing groups. This effect was confirmed by the radical cation deprotonation energy (H(D)) estimated by semiempirical calculations. The results indicate that the ability of carotenoid radical cations to deprotonate decreases in the sequence: beta-ionone > unsymmetrical carotenoids > symmetrical carotenoids. The minimum H(D) values were obtained for proton abstraction from the C(4) atom and the C(5)-methyl group of the cyclohexene ring. It was assumed that deprotonation reaction occurs preferentially at these positions.  相似文献   

11.
The petal carotenoids of several Medicago species, some of them considered as intermediate between the genera Medicago L. and Trigonella L. were investigated. Characteristics common to all species were: (a) the carotene fraction was small (0·2–4·4%) compared with the xanthophylls and their epoxy derivatives, (b) lutein, lutein-5,6-epoxide and violaxanthin constituted 83·7–98·1% of total content and thus were the prominent group in all species, (c) no single carotenoid of appreciable amount was characteristic to any species, (d) groups of related species tended to have similar quantities of major carotenoids.  相似文献   

12.
The visible c.d. spectrum of wild-type Rhodospirillum rubrum shows positive bands [Dratz, Schultz & Sauer (1966) Brookhaven Symp. Biol. 19, 303-318] that are largely due to the B880 antenna pigments, bacteriochlorophyll a and carotenoids. The bacteriochlorophyll c.d. band was absent from the spectrum of R. rubrum G9, a mutant unable to synthesize coloured carotenoids, and could be partly restored by adding extracted carotenoids to freeze-dried membrane vesicles isolated from that mutant. Therefore it seems to arise from either bacteriochlorophyll-carotenoid interactions or bacteriochlorophyll-protein interactions that are induced by the carotenoid. The more complex carotenoid c.d. band had different shapes in native and reconstituted carotenoid-containing membranes. Such differences suggest that the optical activity of the carotenoid in the B880 antenna arises from both non-degenerate and degenerate interactions.  相似文献   

13.
Honeybee pollen (HBP) is a mixture of floral pollen collected by honeybees near the hive. It is characterized by a composition rich in phenolic compounds, carotenoids and vitamins that act as free radicals scavengers, conferring antioxidant and antibacterial capacity to the matrix. These bioactive properties are related to the botanical origin of the honeybee pollen. Honeybee pollen samples were collected from different geographical locations in central Chile, and their total carotenoid content, polyphenols profile by HPLC/MS/MS, DPPH radical scavenging capacity, and antimicrobial capacity against S. pyogenes, E. coli, S. aureus, and P. auriginosa strains were evaluated. Our results showed a good carotenoids content and polyphenols composition, while antioxidant capacity presented values between 0–95 % for the scavenging effect related to the botanical origin of the samples. Inhibition diameter for the different strains presented less variability among the samples, Furthermore, binary mixtures representing the two most abundant species in each HBP were prepared to assess the synergy effect of the floral pollen (FP) present in the samples. Data shows an antagonist effect was observed when assessing the carotenoid content, and a synergy effect often presents for antimicrobial and antioxidant capacity for bee pollen samples. The bioactive capacities of the honeybee pollen and their synergy effect could apply to develop new functional ingredients for the food industry.  相似文献   

14.
Because large species ingest proportionally less food than small ones, it may be predicted that they should incorporate relatively fewer carotenoids to a proportionally equal volume of blood. However, some species may increase their levels of circulating carotenoids by ingesting unusual food. We tested whether the plasma concentration of carotenoids scales to the three‐quarter power of mass in nine predatory and scavenger raptor species. No significant allometric relationships were found due to the unusually high concentrations of carotenoids in the Egyptian Vulture Neophron percnopterus and the Andean condor Vultur gryphus. To assess whether these two species deviate from the allometric rule through the exploitation of unusual sources of carotenoids, or due to a physiological adaptation to improve the uptake of carotenoids, we determined allometric patterns in individuals of these two species kept in captivity with an exclusive diet of flesh. Our results provided support for the allometric rule because the slope of the allometric equation did not differ from a three‐quarter exponent when carotenoid levels of the two outliers were replaced by those of captive birds. This adjustment to the allometric rule suggests a lack of any physiological adaptation to improve the uptake of the low concentrations of carotenoids contained in flesh. Differences between species in carotenoid incorporation into the bloodstream may be ultimately due to contrasting evolutionary history, physiology and associated colour‐signalling strategies, but proximately due to the acquisition of these micronutrients from both usual and unusual dietary sources.  相似文献   

15.
Carotenoid‐based colours in animals are valuable models for testing theories of sexual selection and life‐history trade‐offs because the pigments used in coloration are chemically tractable in the diet and in the body, where they serve multiple purposes (e.g. health enhancement, photoprotection). An important assumption underlying the hypothesized signalling value of carotenoid coloration is that there is a trade‐off in carotenoid pigment allocation, such that not all individuals can meet the physiological/morphological demands for carotenoids (i.e. carotenoids are limited) and that only those who have abundant supplies or fewer demands become the most colourful. Studies of carotenoid trade‐offs in colourful animals have been limited largely to domesticated species, which may have undergone artificial selection that changed the historical/natural immunomodulatory roles of carotenoids, to young animals lacking carotenoid‐based signals or to species displaying carotenoid‐based skin and bare parts. We studied the health benefits of carotenoids during moult in house finches (Carpodacus mexicanus), which display sexually selected, carotenoid‐based plumage coloration. We manipulated dietary carotenoid availability during both winter (nonmoult) and autumn (moult) in captive males and females and found that carotenoid‐supplemented birds mounted stronger immune responses (to phytohemagglutinin injection and to a bacterial inoculation in blood) than control birds only during moult. This study provides experimental, seasonal support for a fundamental tenet of Lozano's ‘carotenoid trade‐off’ hypothesis and adds to a growing list of animal species that benefit immunologically from ingesting higher dietary carotenoid levels. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 560–572.  相似文献   

16.
The carotenoid composition of the deep-water gammaride is reported. Astaxanthin and their derivatives were determined to be major components of the carotenoids (58.4%). Astaxanthin-glycoside-esters comprised 21.6% of total carotenoids. A new carotenoid glycoside ester (CGE) was isolated from the deep-water gammarideAcanthogammarus (Brachyuropus)grewingkii and its structure was elucidated. The structures were determined from spectra (1H-NMR,13C-NMR, MS, IR) after their isolation and quantification by means of semipreparative RP-HPLC and capillary GC-MS.  相似文献   

17.
The estrildid finches (Aves: Passeriformes: Estrildidae) of Africa, Asia, and Australia have been the focus of several recent tests of sexual selection theory. Many estrildids display bright red, orange, or yellow colors in the beak or plumage, which typically are generated by the presence of carotenoid pigments. In this study, we used high-performance liquid chromatography to investigate the carotenoid content of feathers and other colorful tissues in seven species of estrildids. Star finches (Neochmia ruficauda) and diamond firetails (Stagonopleura guttata) circulated two main dietary carotenoids (lutein and zeaxanthin) through the blood and liver and used both to acquire a yellow plumage color. However, five other estrildids (common waxbill, Estrilda astrild; black-rumped waxbill, Estrilda troglodytes; zebra waxbill, Amandava subflava; red avadavat, Amandava amandava; and zebra finch, Taeniopygia guttata) circulated these same dietary carotenoids along with two metabolites (dehydrolutein and anhydrolutein) through the blood and/or liver and used all four as yellow plumage colorants. We subsequently tracked the distribution of these pigments using a published phylogeny of estrildid finches to determine the evolutionary pattern of carotenoid metabolism in these birds. We found that finches from the most ancient tribe of estrildids (Estrildini) possessed the ability to metabolize dietary carotenoids. Although carotenoids from the most ancestral extant estrildid species have yet to be analyzed, we hypothesize (based on their relationships with other songbirds known to have such metabolic capabilities) that these finches inherited from their ancestors the capability to metabolize carotenoids. Interestingly, later in estrildid evolution, certain taxa lost the ability to metabolize dietary carotenoids (e.g., in the Poephilini), suggesting that the occurrence of carotenoid metabolism can be labile and is likely shaped by the relative costs and benefits of color signaling across different species.  相似文献   

18.
Why do some invertebrates store so much carotenoids in their tissues? Storage of carotenoids may not simply be passive and dependent on their environmental availability, as storage variation exists at various taxonomic scales, including among individuals within species. While the strong antioxidant and sometimes immune‐stimulating properties of carotenoids may be beneficial enough to cause the evolution of features improving their assimilation and storage, they may also have fitness downsides explaining why massive carotenoid storage is not universal. Here, the functional and ecological implications of carotenoid storage for the evolution of invertebrate innate immune defenses are examined, especially in crustaceans, which massively store carotenoids for unclear reasons. Three testable hypotheses about the role of carotenoid storage in immunological (resistance and tolerance) and life‐history strategies (with a focus on aging) are proposed, which may ultimately explain the storage of large amounts of these pigments in a context of host–pathogen interactions.  相似文献   

19.
While rodents and other mammals have traditionally served as models for studying carotenoid physiology, many wild animals from a variety of other taxa utilize carotenoids for self-maintenance and reproduction and accumulate far greater concentrations than those found in mammals. Though we have basic understandings of the control and value of carotenoids in some wild animal systems, many gaps remain. For example, parasites and pathogens impose severe survival constraints on free-ranging organisms, but little is known of how carotenoids work in concert with the immune system to combat natural infectious challenges. Furthermore, due to the high mortality rate from which many young animals suffer, health and carotenoid status during the early stages of development may be critical to survival. The relative importance of dietary versus physiological mechanisms for carotenoid uptake has also been understudied in the wild. To begin to shed light on these issues, we studied relationships between dietary and tissue carotenoids, hematological immune parameters, and endoparasitism of wild mallard (Anas platyrhynchos) ducklings at a variety of ages. Lutein, zeaxanthin, β-cryptoxanthin, β-carotene, and canthaxanthin were the most common carotenoids in liver, plasma, and gut contents. We found that, early in development (when food intake is limited), carotenoids were comparatively concentrated in internal tissue (e.g., liver), presumably a carry-over from maternal contributions in yolk, but as ducklings approached independence (and increasingly fed on their own) concentrations were greatest in gut contents. Canthaxanthin concentrations were lower in the plasma and liver of older individuals compared to younger ducklings, even though gut canthaxanthin concentration did not change with age. Additionally, β-carotene was nearly absent from circulation, despite moderate levels within the gut, suggesting a high rate of conversion to retinol. Using principal components analysis, we revealed a correlation between an increased ability to assimilate dietary carotenoids and lower levels of chronic stress (as assessed by lower heterophil-to-lymphocyte ratios) and a correlation between a reduced carotenoid status and increased investment in the immune system (as assessed by higher total leukocyte count). We also found that individuals without parasites had an overall reduced carotenoid status. Thus, we demonstrate age-specific differences in carotenoid allocation in growing animals from a precocial bird species and provide correlational evidence that parasitism and health in wild animals are related to carotenoid status and assimilation ability.  相似文献   

20.
Two spectral forms of the peripheral light-harvesting complex (LH2) from the purple sulfur photosynthetic bacterium Allochromatium vinosum were purified and their photophysical properties characterized. The complexes contain bacteriochlorophyll a (BChl a) and multiple species of carotenoids. The composition of carotenoids depends on the light conditions applied during growth of the cultures. In addition, LH2 grown under high light has a noticeable split of the B800 absorption band. The influence of the change of carotenoid distribution as well as the spectral change of the excitonic absorption of the bacteriochlorophylls on the light-harvesting ability was studied using steady-state absorption, fluorescence and femtosecond time-resolved absorption at 77K. The results demonstrate that the change of the distribution of the carotenoids when cells were grown at low light adapts the absorptive properties of the complex to the light conditions and maintains maximum photon-capture performance. In addition, an explanation for the origin of the enigmatic split of the B800 absorption band is provided. This spectral splitting is also observed in LH2 complexes from other photosynthetic sulfur purple bacterial species. According to results obtained from transient absorption spectroscopy, the B800 band split originates from two spectral forms of the associated BChl a monomeric molecules bound within the same complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号