首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Experiments were conducted to investigate structural features of the aminoacyl stem region of precursor histidine tRNA critical for the proper cleavage by the catalytic RNA component of RNase P that is responsible for 5' maturation. Histidine tRNA was chosen for study because tRNAHis has an 8 base pair instead of the typical 7-base pair aminoacyl stem. The importance of the 3' proximal CCA sequence in the 5'-processing reaction was also investigated. Our results show that the tRNAHis precursor patterned after the natural Bacillus subtilis gene is cleaved by catalytic RNAs from B. subtilis or Escherichia coli, leaving an extra G residue at the 5'-end of the aminoacyl stem. Replacing the 3' proximal CCA sequence in the substrate still allowed the catalytic RNA to cleave at the proper position, but it increased the Km of the reaction. Changing the sequence of the 3' leader region to increase the length of the aminoacyl stem did not alter the cleavage site but reduced the reaction rate. However, replacing the G residue at the expected 5' mature end by an A changed the processing site, resulting in the creation of a 7-base pair aminoacyl stem. The Km of this reaction was not substantially altered. These experiments indicate that the extra 5' G residue in B. subtilis tRNAHis is left on by RNase P processing because of the precursor's structure at the aminoacyl stem and that the cleavage site can be altered by a single base change. We have also shown that the catalytic RNA alone from either B. subtilis or E. coli is capable of cleaving a precursor tRNA in which the 3' proximal CCA sequence is replaced by other nucleotides.  相似文献   

6.
Bacillus subtilis RNAase III cleavage sites in phage SP82 early mRNA   总被引:8,自引:0,他引:8  
A T Panganiban  H R Whiteley 《Cell》1983,33(3):907-913
We have determined the DNA sequence encoding three sites in Bacillus subtilis phage SP82 early mRNA that are cleaved by a B. subtilis processing endonuclease. The products generated by cleavage of the RNA were sequenced to determine the exact points of RNA strand scission. We propose that the RNA surrounding each processing site forms a stable stem-loop structure and that cleavage occurs at the 5- side of specific adenosine residues located on the loop. The model is consistent with our previous observations that the active site of the enzyme recognizes double-stranded RNA. S1 mapping experiments with RNA-DNA hybrids established that the same cleavage sites are used both in vivo and in vitro. Examination of the B. subtilis processing sites on SP82 mRNA reveals distinctive features of primary and secondary structure that are not present in any of the E. coli RNAase III processing sites previously studied.  相似文献   

7.
8.
9.
An RNA processing activity capable of cleaving Bacillus subtilis phage SP82 early mRNA has been purified to apparent homogeneity from crude extracts of uninfected B. subtilis. The enzyme, a functional monomer of Mr approximately 27,000, cleaves only at the 5' side of adenosine residues at processing sites and is competitively inhibited by double-stranded synthetic RNA polymers. Processed SP82 mRNAs were translated in an Escherichia coli cell-free system and no qualitative or quantitative effects of processing on the synthesis of polypeptides was observed. The processing enzyme does not cleave T7 mRNA, E. coli precursor rRNA, or double-stranded poly(AU). A recombinant plasmid containing portions of two B. subtilis rRNA gene sets was transcribed in vitro and the resulting RNA was cleaved in the spacer region between the 16 S and 23 S rRNA genes. The ability of the B. subtilis processing enzyme to cleave SP82 mRNA and B. subtilis precursor rRNA and the fact that the enzyme has high affinity for double-stranded RNA suggest that it is the functional analog of E. coli RNase III.  相似文献   

10.
We have investigated the RNA structure of the region surrounding the muscle-specific exon 6B of the chicken beta-tropomyosin gene. We have used a variety of chemical and enzymatic probes: dimethylsulfate, N-cyclohexyl-N'-(2-(N-methylmorpholino)-ethyl)-carbodiimide-p-tolu enesulfonate) , RNase T1 and RNase V1. Lead acetate was also used to obtain some information on the tertiary structure of this region. Probing the wild-type sequence suggests a model involving one-stem and three-stem-loop structures in and around this exon. Two of these, hairpin I and stem III, have previously been implicated in repression of splicing of the intron following exon 6B in a HeLa nuclear extract. Stem I includes sequences at the beginning of exon 6B and stem III results from interaction of the intron upstream from exon 6B with sequences in the middle of the intron downstream from this exon (the intron whose splicing is repressed). Neither stem I nor stem III directly involves the consensus sequences (5' splice site, branch-point, 3' splice site) of the repressed intron. Probing RNAs that are derepressed for splicing of this intron show that there are structural changes around the 5' splice site and branch-point sequence that correlate with the derepression. This is true, despite the fact that the derepressed RNAs are altered in a region far from these consensus sequences. The most striking structural correlation with splicing capacity of the intron downstream from exon 6B is seen by probing with lead acetate. Lead ions cut RNA at specific residues; these sites are very sensitive to RNA tertiary structure. Repressed and derepressed RNAs show entirely different cleavage patterns after incubation with lead acetate. Remarkably, hybridizing a derepressed RNA with an RNA comprising the ascending arm of stem III not only re-establishes repression, but also converts the pattern of susceptibility to attack by lead ions over the whole molecule. We suggest that RNA conformation plays a role in keeping exon 6B from being spliced into non-muscle cell mRNA.  相似文献   

11.
A phosphate-dependent exonuclease activity was identified in purified protein fractions from Bacillus subtilis that were selected for binding to poly(I)-poly(C) agarose. Based on the characteristics of the degradation products and the absence of this activity in a pnpA strain, which contains a transposon insertion in the B. subtilis PNPase gene (Luttinger et al ., 1996 — accompanying paper), this exonuclease activity was shown to be due to polynucleotide phosphorylase (PNPase). Processive 3'-to-5' exonucleolytic degradation of an SP82 phage RNA substrate was stalled at a particular site. Structure probing of the RNA showed that the stall site was downstream of a particular stem-loop structure. A similar stall site was observed for an RNA that comprised the intergenic region between the B. subtilis rpsO and pnpA genes. The ability to initiate degradation of a substrate that had a stem structure at its 3' end differed for the B. subtilis and Escherichia coli PNPase enzymes.  相似文献   

12.
13.
14.
Li Z  Gong X  Joshi VH  Li M 《RNA (New York, N.Y.)》2005,11(5):567-577
Maturation of the tRNA 3' terminus is a complicated process in bacteria. Usually, it is initiated by an endonucleolytic cleavage carried out by RNase E and Z in different bacteria. In Escherichia coli, RNase E cleaves AU-rich sequences downstream of tRNA, producing processing intermediates with a few extra residues at the 3' end; these are then removed by exoribonuclease trimming to generate the mature 3' end. Here we show that essentially all E. coli tRNA precursors contain a potential RNase E cleavage site, the AU-rich sequence element (AUE), in the 3' trailer. This suggests that RNase E cleavage and exonucleolytic trimming is a general pathway for tRNA maturation in this organism. Remarkably, the AUE immediately downstream of each tRNA is selectively conserved in bacteria having RNase E and tRNA-specific exoribonucleases, suggesting that this pathway for tRNA processing is also commonly used in these bacteria. Two types of RNase E-like proteins are identified in actinobacteria and the alpha-subdivision of proteobacteria. The tRNA 3' proximal AUE is conserved in bacteria with only one type of E-like protein. Selective conservation of the AUE is usually not observed in bacteria without RNase E. These results demonstrate a novel example of co-evolution of RNA sequences with processing activities.  相似文献   

15.
16.
17.
18.
19.
20.
The DNA of Bacillus subtilis bacteriophage SP10 is partially resistant to cleavage and methylation in vitro by restriction enzyme R . BsuRI and its cognate methylase even though greater than 20 copies of the target sequence, 5' ... GGCC ... 3', are present on the phage genome. YThy, a hypermodified oxopyrimidine that replaces a fraction of the thymine residues in SP10 DNA, was responsible for this protection, since YThy-free DNA was no longer resistant. Sites that were normally resistant could nevertheless be cleaved or methylated in vitro if the salt concentration was reduced or dimethyl sulfoxide was added to the reaction buffer. Analysis of the termini produced by cleavage suggested that resistant sites occurred in the sequence 5' ... GGCC-YThy ... 3', whereas sensitive sites, of which there were only two per genome, occurred in the sequence 5' ... GGCCG ... 3'. These in vitro results provide an explanation for the in vivo resistance of SP10 to restriction-modification by B. subtilis R. They also suggest ways in which the presence of the atypical base YThy in regions that flank the target might upset critical DNA-enzyme interactions necessary to locate and recognize the specific site of cleavage or methylation. YThy also strongly protected 5' ... GCNGC ... 3' (R . Fnu4HI) sequences on SP10 DNA, but the biological relevance of this protection is unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号