首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Libraries for genomic SELEX.   总被引:9,自引:5,他引:4       下载免费PDF全文
An increasing number of proteins are being identified that regulate gene expression by binding specific nucleic acidsin vivo. A method termed genomic SELEX facilitates the rapid identification of networks of protein-nucleic acid interactions by identifying within the genomic sequences of an organism the highest affinity sites for any protein of the organism. As with its progenitor, SELEX of random-sequence nucleic acids, genomic SELEX involves iterative binding, partitioning, and amplification of nucleic acids. The two methods differ in that the variable region of the nucleic acid library for genomic SELEX is derived from the genome of an organism. We have used a quick and simple method to construct Escherichia coli, Saccharomyces cerevisiae, and human genomic DNA PCR libraries that can be transcribed with T7 RNA polymerase. We present evidence that the libraries contain overlapping inserts starting at most of the positions within the genome, making these libraries suitable for genomic SELEX.  相似文献   

2.
3.
Li X  Manley JL 《Cell》2005,122(3):365-378
  相似文献   

4.
Genomic sequencing reveals similar but limited numbers of protein-coding genes in different genomes, which begs the question of how organismal diversities are generated. Alternative pre-mRNA splicing, a widespread phenomenon in higher eukaryotic genomes, is thought to provide a mechanism to increase the complexity of the proteome and introduce additional layers for regulating gene expression in different cell types and during development. Among a large number of factors implicated in the splicing regulation are the SR protein family of splicing factors and SR protein-specific kinases. Here, we summarize the rules for SR proteins to function as splicing regulators, which depend on where they bind in exons versus intronic regions, on alternative exons versus flanking competing exons, and on cooperative as well as competitive binding between different SR protein family members on many of those locations. We review the importance of cycles of SR protein phosphorylation/dephosphorylation in the splicing reaction with emphasis on the recent molecular insight into the role of SR protein phosphorylation in early steps of spliceosome assembly. Finally, we highlight recent discoveries of SR protein-specific kinases in transducing growth signals to regulate alternative splicing in the nucleus and the connection of both SR proteins and SR protein kinases to human diseases, particularly cancer.  相似文献   

5.
A modified method of cycled selection was used to characterize splicing enhancers for exon inclusion from a pool of beta-globin-based three exon/two intron pre-mRNAs with a variable number of random nucleotides incorporated in the internal exon. The pre-mRNAs generated by this method contained random sequences ranging from 0 to 18 nucleotides in length. This method was used to isolate particular splicing enhancer motifs from a previously enriched pool of extremely diverse enhancers. After four cycles of selection for mRNA containing the internal exon, a distinct enhancer motif (GACGAC...CAGCAG) was highly enriched. This motif served as strong splicing enhancers in a heterogeneous exon. We have shown here that the selected enhancer motif promotes exon inclusion through specific interaction with SRp30. We have also shown that although present in many of our selected splicing enhancers conforming to this motif, a typical purine-rich enhancer sequence is dispensable for either enhancer activity or binding with SRp30.  相似文献   

6.
7.
8.
SRrp86 is an 86-kDa member of the SR protein superfamily that is unique in that it can alter splice site selection by regulating the activity of other SR proteins. To study the function of SRrp86, inducible cell lines were created in which the concentration of SRrp86 could be varied and its effects on alternative splicing determined. Here, we show that SRrp86 can activate SRp20 and repress SC35 in a dose-dependent manner both in vitro and in vivo. These effects are apparently mediated through direct protein-protein interaction, as pull-down assays showed that SRrp86 interacts with both SRp20 and SC35. Consistent with the hypothesis that relatively modest changes in the concentration or activity of one or more splicing factors can combinatorially regulate overall splicing, protein expression patterns of SRrp86, SRp20, and SC35 reveal that each tissue maintains a unique ratio of these factors. Regulation of SR protein activity, coupled with regulated protein expression, suggest that SRrp86 may play a crucial role in determining tissue specific patterns of alternative splicing.  相似文献   

9.
Cahill K 《Physical biology》2004,1(1-2):C1-C4
Alternative splicing allows an organism to make different proteins in different cells at different times, all from the same gene. In a cell that uses alternative splicing, the total length of all the exons is much shorter than in a cell that encodes the same set of proteins without alternative splicing. This economical use of exons makes genes more stable during reproduction and development because a genome with a shorter exon length is more resistant to harmful mutations. Genomic stability may be the reason why higher vertebrates splice alternatively. For a broad class of alternatively spliced genes, a formula is given for the increase in their stability.  相似文献   

10.
Twyffels L  Gueydan C  Kruys V 《The FEBS journal》2011,278(18):3246-3255
Serine-arginine (SR) proteins commonly designate a family of eukaryotic RNA binding proteins containing a protein domain composed of several repeats of the arginine-serine dipeptide, termed the arginine-serine (RS) domain. This protein family is involved in essential nuclear processes such as constitutive and alternative splicing of mRNA precursors. Besides participating in crucial activities in the nuclear compartment, several SR proteins are able to shuttle between the nucleus and the cytoplasm and to exert regulatory functions in the latter compartment. This review aims at discussing the properties of shuttling SR proteins with particular emphasis on their nucleo-cytoplasmic traffic and their cytoplasmic functions. Indeed, recent findings have unravelled the complex regulation of SR protein nucleo-cytoplasmic distribution and the diversity of cytoplasmic mechanisms in which these proteins are involved.  相似文献   

11.
SR蛋白家族在RNA剪接中的调控作用   总被引:1,自引:0,他引:1  
SR蛋白家族成员都具有一个富含丝氨酸/精氨酸(S/R)重复序列的RS结构域,在RNA剪接体的组装和选择性剪接的调控过程中具有重要的作用。绝大多数SR蛋白是生存的必需因子,通过其RS结构域和特有的其他结构域,实现与前体mRNA的特异性序列或其他剪接因子的相互作用,协同完成剪接位点的正确选择或促进剪接体的形成。深入研究SR蛋白家族在RNA选择性剪接中的调控机制,可以促进以疾病治疗或害虫防治为目的的应用研究。该文总结了SR蛋白家族在基础研究和应用方面的进展。  相似文献   

12.
13.
Single-stranded DNA or RNA libraries used in SELEX experiments usually include primer-annealing sequences for PCR amplification. In genomic SELEX, these fixed sequences may form base pairs with the central genomic fragments and interfere with the binding of target molecules to the genomic sequences. In this study, a method has been developed to circumvent these artificial effects. Primer-annealing sequences are removed from the genomic library before selection with the target protein and are then regenerated to allow amplification of the selected genomic fragments. A key step in the regeneration of primer-annealing sequences is to employ thermal cycles of hybridization-extension, using the sequences from unselected pools as templates. The genomic library was derived from the bacteriophage fd, and the gene 5 protein (g5p) from the phage was used as a target protein. After four rounds of primer-free genomic SELEX, most cloned sequences overlapped at a segment within gene 6 of the viral genome. This sequence segment was pyrimidine-rich and contained no stable secondary structures. Compared with a neighboring genomic fragment, a representative sequence from the family of selected sequences had about 23-fold higher g5p-binding affinity. Results from primer-free genomic SELEX were compared with the results from two other genomic SELEX protocols.  相似文献   

14.
Accumulating evidence shows that obesity is associated with doxorubicin cardiac toxicity in the heart, but the molecular mechanisms that contribute to this pathological response are not understood. Adiponectin is an adipose-derived, cardioprotective factor that is down-regulated in obesity. Here, we investigated the effect of adiponectin on doxorubicin (DOX)-induced cardiotoxicity and assessed the mechanisms of this effect. A single dose of DOX was intraperitoneally injected into the abdomen of adiponectin knock-out (APN-KO) and wild-type (WT) mice. APN-KO mice had increased mortality and exacerbated contractile dysfunction of left ventricle compared with WT mice. APN-KO mice also showed increased apoptotic activity and diminished Akt signaling in the failing myocardium. Systemic delivery of adenoviral vector expressing adiponectin improved left ventricle dysfunction and myocardial apoptosis following DOX injection in WT and APN-KO mice but not in Akt1 heterozygous KO mice. In cultured rat neonatal cardiomyocytes, adiponectin stimulated Akt phosphorylation and inhibited DOX-stimulated apoptosis. Treatment with sphingosine kinase-1 inhibitor or sphingosine 1-phosphate receptor antagonist diminished adiponectin-induced Akt phosphorylation and reversed the inhibitory effects of adiponectin on myocyte apoptosis. Pretreatment with anti-calreticulin antibody reduced the binding of adiponectin to cardiac myocytes and blocked the adiponectin-stimulated increase in Akt activation and survival in cardiomyocytes. Interference of the LRP1/calreticulin co-receptor system by siRNA or blocking antibodies diminished the stimulatory actions of adiponectin on Akt activation and myocyte survival. These data show that adiponectin protects against DOX-induced cardiotoxicity by its ability to promote Akt signaling.  相似文献   

15.
Mammalian genes are characterized by relatively small exons surrounded by variable lengths of intronic sequence. Sequences similar to the splice signals that define the 5' and 3' boundaries of these exons are also present in abundance throughout the surrounding introns. What causes the real sites to be distinguished from the multitude of pseudosites in pre-mRNA is unclear. Much progress has been made in defining additional sequence elements that enhance the use of particular sites. Less work has been done on sequences that repress the use of particular splice sites. To find additional examples of sequences that inhibit splicing, we searched human genomic DNA libraries for sequences that would inhibit the inclusion of a constitutively spliced exon. Genetic selection experiments suggested that such sequences were common, and we subsequently tested randomly chosen restriction fragments of about 100 bp. When inserted into the central exon of a three-exon minigene, about one in three inhibited inclusion, revealing a high frequency of inhibitory elements in human DNA. In contrast, only 1 in 27 Escherichia coli DNA fragments was inhibitory. Several previously identified silencing elements derived from alternatively spliced exons functioned weakly in this constitutively spliced exon. In contrast, a high-affinity site for U2AF65 strongly inhibited exon inclusion. Together, our results suggest that splicing occurs in a background of repression and, since many of our inhibitors contain splice like signals, we suggest that repression of some pseudosites may occur through an inhibitory arrangement of these sites.  相似文献   

16.
Lin S  Xiao R  Sun P  Xu X  Fu XD 《Molecular cell》2005,20(3):413-425
SR proteins are a family of sequence-specific RNA binding proteins originally discovered as essential factors for pre-mRNA splicing and recently implicated in mRNA transport, stability, and translation. Here, we used a genetic complementation system derived from conditional knockout mice to address the function and regulation of SR proteins in vivo. We demonstrate that ASF/SF2 and SC35 are each required for cell viability, but, surprisingly, the effector RS domain of ASF/SF2 is dispensable for cell survival in MEFs. Although shuttling SR proteins have been implicated in mRNA export, prevention of ASF/SF2 from shuttling had little impact on mRNA export. We found that shuttling and nonshuttling SR proteins are segregated in an orderly fashion during mRNP maturation, indicating distinct recycling pathways for different SR proteins. We further showed that this process is regulated by differential dephosphorylation of the RS domain, thus revealing a sorting mechanism for mRNP transition from splicing to export.  相似文献   

17.
The alternative exon EIIIA of the fibronectin gene is included in mRNAs produced in undifferentiated mesenchymal cells but excluded from differentiated chondrocytes. As members of the SR protein family of splicing factors have been demonstrated to be involved in the alternative splicing of other mRNAs, the role of SR proteins in chondrogenesis-associated EIIIA splicing was investigated. SR proteins interacted with chick exon EIIIA sequences that are required for exon inclusion in a gel mobility shift assay. Addition of SR proteins to in vitro splicing reactions increased the rate and extent of exon EIIIA inclusion. Co-transfection studies employing cDNAs encoding individual SR proteins revealed that SRp20 decreased mRNA accumulation in HeLa cells, which make A+ mRNA, apparently by interfering with pre-mRNA splicing. Co-transfection studies also demonstrated that SRp40 increased exon EIIIA inclusion in chondrocytes, but not in HeLa cells, suggesting the importance of cellular context for SR protein activity. Immunoblot analysis did not reveal a relative depletion of SRp40 in chondrocytic cells. Possible mechanisms for regulation of EIIIA splicing in particular, and chondrogenesis associated splicing in general, are discussed.  相似文献   

18.
19.
20.
An unexpectedly high number of regulatory RNAs have been recently discovered that fine-tune the function of genes at all levels of expression. We employed Genomic SELEX, a method to identify protein-binding RNAs encoded in the genome, to search for further regulatory RNAs in Escherichia coli. We used the global regulator protein Hfq as bait, because it can interact with a large number of RNAs, promoting their interaction. The enriched SELEX pool was subjected to deep sequencing, and 8865 sequences were mapped to the E. coli genome. These short sequences represent genomic Hfq-aptamers and are part of potential regulatory elements within RNA molecules. The motif 5′-AAYAAYAA-3′ was enriched in the selected RNAs and confers low-nanomolar affinity to Hfq. The motif was confirmed to bind Hfq by DMS footprinting. The Hfq aptamers are 4-fold more frequent on the antisense strand of protein coding genes than on the sense strand. They were enriched opposite to translation start sites or opposite to intervening sequences between ORFs in operons. These results expand the repertoire of Hfq targets and also suggest that Hfq might regulate the expression of a large number of genes via interaction with cis-antisense RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号