首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A recently presented solution method for the bidomain model (Johnston et al. 2006), which involves the application of direct current for studying electrical potential in a slab of cardiac tissue, is extended here to allow the use of an applied alternating current. The advantage of using AC current, in a four-electrode method for determining cardiac conductivities, is that instead of using ‘close’ and ‘wide’ electrode spacings to make potential measurements, increasing the frequency of the AC current redirects a fraction of the current from the extracellular space into the intracellular space.

The model is based on the work of Le Guyader et al. (2001), but is able to include the effects of the fibre rotation between the epicardium and the endocardium on the potentials. Also, rather than using a full numerical technique, the solution method uses Fourier series and a simple one dimensional finite difference scheme, which has the advantage of allowing the potentials to be calculated only at points, such as the measuring electrodes, where they are required.

The new alternating current model, which includes intracellular capacitance, is used with a particular four-electrode configuration, to show that the potential measured is affected by changes in fibre rotation. This is significant because it indicates that it is necessary to include fibre rotation in models, which are to be used in conjunction with measuring arrays that are more complex than those involving simply surface probes or a single vertical probe.  相似文献   

2.
This paper presents a mathematical model and new solution technique for studying the electric potential in a slab of cardiac tissue. The model is based on the bidomain representation of cardiac tissue and also allows for the effects of fibre rotation between the epicardium and the endocardium. A detailed solution method, based on Fourier Series and a simple one-dimensional finite difference scheme, for the governing equations for electric potential in the tissue and the blood, is also presented. This method has the advantage that the potential can be calculated only at points where it is required, such as the measuring electrodes. The model is then used to study various electrode configurations which have been proposed to determine cardiac tissue conductivity parameters. Three electrode configurations are analysed in terms of electrode spacing, placement position and the effect of including fibre rotation: the usual surface four-electrode configuration; a single vertical analogue of this and a two probe configuration, which has the current electrodes on one probe and the measuring electrodes on the other, a fixed distance away. It is found that including fibre rotation has no effect on the potentials measured in the first two cases; however, in the two probe case, non-zero fibre rotation causes a significant drop in the voltage measured. This leads to the conclusion that it is necessary to include the effects of fibre rotation in any model which involves the use of multiple plunge electrodes.  相似文献   

3.
 A double cable model of the myelinated human motor nerve fibre is presented. The model is based on the nodal and internodal channels in a previous, two-component model of human motor axons (Bostock et al. 1991), added to a complex extended cable structure of nodal, paranodal and internodal segments. The model assumes a high-resistance myelin sheath and a leakage pathway to the internodal axolemma via the paranodal seal resistance and periaxonal space. The parameter values of the model were adjusted to match the recordings of threshold electrotonus in human motor fibres from Bostock et al. (1991). Kirchoff ’s current law was used to derive a system of partial differential equations for the electrical equivalent circuit, and numerical integration was performed with a fixed time increment and non-uniform spatial step sizes, in accordance with the complex structure of the fibre. The model calculations provide estimates of the spatial and temporal distributions of action potentials and their transaxonal and transmyelin components, both in different segments of the fibre and at different moments during action potential propagation. The distribution of transaxonal and transmyelin currents along the fibre and their contributions from different ionic channels are also explored. Received: 14 July 1994/Accepted in revised form: 4 April 1995  相似文献   

4.
The Hodgkin-Huxley (1952) model was used to calculate intracellular potentials by the method of Joyner et al. (1978). Extracellular potentials were estimated on the basis of a mathematical model proposed by us. It has shown that, irrespective of practical isopotentiality of the membrane of a local inhomogeneity, the latter affects extracellular potentials in two ways: 1) through changes in the potential profile in the region of the structure before the inhomogeneity; 2) through its own potential profile. The first effect is considerably greater than the second one, but the second is greater than the effect of the equal portion of the thin fibre. Increase in the diameter or length of an inhomogeneity is combined with such changes in the potential profile, that the effect of the inhomogeneity on the extracellular potential amplitude is practically independent of its actual size. The extracellular potential waveform substantially depends on the ratio of the diameters of the two parts of the structure and on the position of the inhomogeneity in relation to the sealed structure end. Registration of the positive-negative potentials having a large positive phase should not be considered as an indication of passive properties of the structure.  相似文献   

5.
H Kim  KE Jones 《PloS one》2012,7(8):e43654
Our goal was to investigate how the propagation of alternating signals (i.e. AC), like action potentials, into the dendrites influenced nonlinear firing behaviour of motor neurons using a systematically reduced neuron model. A recently developed reduced modeling approach using only steady-current (i.e. DC) signaling was analytically expanded to retain features of the frequency-response analysis carried out in multicompartment anatomically reconstructed models. Bifurcation analysis of the extended model showed that the typically overlooked parameter of AC amplitude attenuation was positively correlated with the current threshold for the activation of a plateau potential in the dendrite. Within the multiparameter space map of the reduced model the region demonstrating "fully-bistable" firing was bounded by directional DC attenuation values that were negatively correlated to AC attenuation. Based on these results we conclude that analytically derived reduced models of dendritic trees should be fit on DC and AC signaling, as both are important biophysical parameters governing the nonlinear firing behaviour of motor neurons.  相似文献   

6.
Electrical properties of spherical syncytia.   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

7.
Pituitary corticotroph cells generate repetitive action potentials and associated Ca2+ transients in response to the agonist corticotropin releasing hormone (CRH). There is indirect evidence suggesting that the agonist, by way of complex intracellular mechanisms, modulates the voltage sensitivity of the L-type Ca2+ channels embedded in the plasma membrane. We have previously constructed a Hodgkin-Huxley-type model of this process, which indicated that an increase in the L-type Ca2+ current is sufficient to generate repetitive action potentials (LeBeau et al. (1997). Biophys. J.73, 1263-1275). CRH is also believed to inhibit an inwardly rectifying K+ current. In this paper, we have found that a CRH-induced inhibition of the inwardly rectifying K+ current increases the model action potential firing frequency, [Ca2+]i transients and membrane excitability. This dual modulatory action of CRH on inward rectifier and voltage-gated Ca2+ channels better describes the observed CRH-induced effects. This structural alteration to the model along with parameter changes bring the model firing frequency in line with experimental data. We also show that the model exhibits experimentally observed bursting behaviour, where the depolarization spike is followed by small oscillations in the membrane potential.  相似文献   

8.
A model of electrical activity in the heart has been developed that treats the intracellular domain and the extracellular domain as electrical syncytia with anisotropic resistivities (bi-syncytial model). At the microscopic level, propagation is assumed to proceed primarily along the axes of individual cells. Considerations at the macroscopic level relate the transmembrane current to the intracellular and extracellular resistivity and the transmembrane potential. The result is a relationship between instantaneous extracellular potentials and cardiac action potentials.  相似文献   

9.
Models of cellular osmotic behaviour depend on thermodynamic solution theories to calculate chemical potentials in the solutions inside and outside the cell. These solutions are generally thermodynamically non-ideal under cryobiological conditions. The molality-based Elliott et al. form of the multi-solute osmotic virial equation is a solution theory which has been demonstrated to provide accurate predictions in cryobiological solutions, accounting for the non-ideality of these solutions using solute-specific thermodynamic parameters called osmotic virial coefficients. However, this solution theory requires as inputs the exact concentration of every solute in the solution being modeled, which poses a problem for the cytoplasm, where such detailed information is rarely available. This problem can be overcome by using a grouped solute approach for modeling the cytoplasm, where all the non-permeating intracellular solutes are treated as a single non-permeating “grouped” intracellular solute. We have recently shown (Zielinski et al., J Physical Chemistry B, 2017) that such a grouped solute approach is theoretically valid when used with the Elliott et al. model, and Ross-Rodriguez et al. (Biopreservation and Biobanking, 2012) have previously developed a method for measuring the cell type-specific osmotic virial coefficients of the grouped intracellular solute. However, the Ross-Rodriguez et al. method suffers from a lack of precision, which—as we demonstrate in this work—can severely impact the accuracy of osmotic model predictions under certain conditions. Thus, we herein develop a novel method for measuring grouped intracellular solute osmotic virial coefficients which yields more precise values than the existing method and then apply this new method to measure these coefficients for human umbilical vein endothelial cells.  相似文献   

10.
11.
The preparation was stimulated externally and transmembrane action potentials were recorded with intracellular microelectrodes. The relationship between the area of the first action potential after a pause in stimulation and the duration of the pause was examined. It was found that the area retained its dependence on the pattern of stimulation prior to the pause. These experiments confirm one of the predictions of a mathematical model (Gibbs et al., 1963) which describes the relationship between the area of action potentials and the pattern of stimulation.  相似文献   

12.
In this paper a mathematical model of a left ventricle with a cylindrical geometry is presented with the aim of gaining a better understanding of the relationship between subendocardial ischaemia and ST depression. The model is formulated as an infinite cylinder and takes into account the full bidomain nature of cardiac tissue, as well as fibre rotation. A detailed solution method (based on Fourier series, Fourier transforms and a one dimensional finite difference scheme) for the governing equations for electric potential in the tissue and the blood is also presented. The model presented is used to study the effect increasing subendocardial ischaemia has on the epicardial potential distribution as well as the effects of changing the bidomain conductivity values. The epicardial potential distributions obtained with this cylindrical geometry are compared with results obtained using a previously published slab model. Results of the simulations presented show that the morphologies of the epicardial potential distributions are similar between the two geometries, with the main difference being that the cylindrical model predicts slightly higher potentials.  相似文献   

13.
The intracellular and interstitial potentials associated with each cell or fiber in multicellular preparations carrying a uniformly propagating wave are important for characterizing the electrophysiological behavior of the preparation and in particular, for evaluating the source contributed by each fiber. The aforementioned potentials depend on a number of factors including the conductivities characterizing the intracellular, interstitial, and extracellular domains, the thickness of the tissue, and the distance (depth) of the field point from the surface of the tissue. A model study is presented describing the extracellular and interstitial potential distribution and current flow in a cylindrical bundle of cardiac muscle arising from a planar wavefront. For simplicity, the bundle is considered as a bidomain. Using typical values of conductivity, the results show that the intracellular and interstitial potential of fibers near the center of a very large bundle (greater than 10 mm) may be approximated by the potentials of a single fiber surrounded by a limited extracellular space (a fiber in oil), hence justifying a core-conductor model. For smaller bundles, the peak interstitial potential is less than that predicted by the core-conductor model but still large enough to affect the overall source strength. The magnitude of the source strength is greatest for fibers lying near the center of the bundle and diminishes sharply for fibers within 50 microns of the surface.  相似文献   

14.
This paper presents an implementation of the finite volume method with the aim of studying subendocardial ischaemia during the ST segment. In this implementation, based on hexahedral finite volumes, each quadrilateral sub-face is split into two triangles to improve the accuracy of the numerical integration in complex geometries and when fibre rotation is included. The numerical method is validated against previously published solutions obtained from slab and cylindrical models of the left ventricle with subendocardial ischaemia and no fibre rotation. Epicardial potential distributions are then obtained for a half-ellipsoid model of the left ventricle. In this case it is shown that for isotropic cardiac tissue the degree of subendocardial ischaemia does not affect the epicardial potential distribution, which is consistent with previous findings from analytical studies in simpler geometries. The paper also considers the behaviour of various preconditioners for solving numerically the resulting system of algebraic equations resulting from the implementation of the finite volume method. It is observed that each geometry considered has its own optimal preconditioner.  相似文献   

15.
This study presents a comparison of semi-analytical and numerical solution techniques for solving the passive bidomain equation in simple tissue geometries containing a region of subendocardial ischaemia. When the semi-analytical solution is based on Fourier transforms, recovering the solution from the frequency domain via fast Fourier transforms imposes a periodic boundary condition on the solution of the partial differential equation. On the other hand, the numerical solution uses an insulation boundary condition. When these techniques are applied to calculate the epicardial surface potentials, both yield a three well potential distribution which is identical if fibre rotation within the tissue is ignored. However, when fibre rotation is included, the resulting three-well distribution rotates, but through different angles, depending on the solution method. A quantitative comparison between the semi-analytical and numerical solutiontechniques is presented in terms of the effect fibre rotation has on the rotation of the epicardial potential distribution. It turns out that the Fourier transform approach predicts a larger rotation of the epicardial potential distribution than the numerical solution. The conclusion from this study is that it is not always possible to use analytical or semi-analytical solutions to check the accuracy of numerical solution procedures. For the problem considered here, this checking is only possible when it is assumed that there is no fibre rotation through the tissue.  相似文献   

16.
In this study various electrical conductivity approximations used in bidomain models of cardiac tissue are considered. Comparisons are based on epicardial surface potential distributions arising from regions of subendocardial ischaemia situated within the cardiac tissue. Approximations studied are a single conductivity bidomain model, an isotropic bidomain model and equal and reciprocal anisotropy ratios both with and without fibre rotation. It is demonstrated both analytically and numerically that the approximations involving a single conductivity bidomain, an isotropic bidomain or equal anisotropy ratios (ignoring fibre rotation) results in identical epicardial potential distributions for all degrees of subendocardial ischaemia. This result is contrary to experimental observations. It is further shown that by assuming reciprocal anisotropy ratios, epicardial potential distributions vary with the degree of subendocardial ischaemia. However, it is concluded that unequal anisotropy ratios must be used to obtain the true character of experimental observations.  相似文献   

17.
A model based on that of Koefoed-Johnsen & Ussing (1958) and elaborated by Hviid Larsen (1978) and Lew et al. (1979), is designed using network thermodynamic theory and used to simulate experiments performed on epithelia. Three different expressions for the apical sodium permeability are tested for their ability to reproduce the saturation of the short-circuit current with increasing mucosal sodium concentration. Using the parameters from the previous models, the sodium entry step is shown to be the rate limiting step. If the apical sodium permeability is constant, there is no saturation of the short-circuit current with increasing mucosal sodium. The saturation of the short-circuit current is simulated with versions of the model which include a variable apical sodium permeability. The phenomenological expressions used for the variable permeabilities are those proposed by Fuchs et al. (1977) and Civan & Bookman (1982). They describe the so-called feedback effect of the mucosal and intracellular sodium concentrations.  相似文献   

18.
The electrical source strength for an isolated, active, excitable fiber can be taken to be its transmembrane current as an excellent approximation. The transmembrane current can be determined from intracellular potentials only. But for multicellular preparations, particularly cardiac ventricular muscle, the electrical source strength may be changed significantly by the presence of the interstitial potential field. This report examines the size of the interstitial potential field as a function of depth into a semi-infinite tissue structure of cardiac muscle regarded as syncytial. A uniform propagating plane wave of excitation is assumed and the interstitial potential field is found based on consideration of the medium as a continuum (bidomain model). As a whole, the results are inconsistent with any of the limiting cases normally used to represent the volume conductor, and suggest that in only the thinnest of tissue (less than 200 micron) can the interstitial potentials be ignored.  相似文献   

19.
Analytical solutions are obtained describing the spread of potential in a continuous syncytium which is the three-dimensional analogue of the “cable” and “thin sheet” models. Two discrete (finite-element) models are also developed and their behaviour shown to agree with that of the continuous model. All three models are able to account for the peculiarities of passive responses to intracellular current injection in tissues such as cardiac and smooth muscle. The time course and spread of junction potentials in electrically coupled tissues is discussed.  相似文献   

20.
A recent paper of B. Naundorf et al. described an intriguing negative correlation between variability of the onset potential at which an action potential occurs (the onset span) and the rapidity of action potential initiation (the onset rapidity). This correlation was demonstrated in numerical simulations of the Hodgkin-Huxley model. Due to this antagonism, it is argued that Hodgkin-Huxley-type models are unable to explain action potential initiation observed in cortical neurons in vivo or in vitro. Here we apply a method from theoretical physics to derive an analytical characterization of this problem. We analytically compute the probability distribution of onset potentials and analytically derive the inverse relationship between onset span and onset rapidity. We find that the relationship between onset span and onset rapidity depends on the level of synaptic background activity. Hence we are able to elucidate the regions of parameter space for which the Hodgkin-Huxley model is able to accurately describe the behavior of this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号