首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hamster sperm were immotile in the medium at free Ca2+ concentrations ([Ca2+]) below 1 x 10(-4) M. The flagellum was acutely bent in the opposite direction to the curve of the hook-shaped heads. This phenomenon seemed to be caused by the decrease in the intracellular cAMP concentration, since the cAMP concentration was low at [Ca2+] below 1 x 10(-4) M and increased abruptly at 1 x 10(-3) M, at which sperm were swimming actively. In addition, sperm became motile due to treatment with 8-bromo-cAMP, a membrane permeable analogue of cAMP, in a medium without Ca2+. These results suggested that extracellular Ca2+ is involved in the regulation of flagellar movement via increasing intracellular cAMP concentration. By the treatment with W-13, a calmodulin inhibitor, sperm also became motile, although cAMP concentration remained at a low level. These results suggested that cAMP is not always required for the flagellar movement when the function of calmodulin is depressed.  相似文献   

2.
Incubation of isolated hepatocytes containing normal Ca2+ levels with angiotensin II, vasopressin or A23187 caused significant inhibition of the cAMP response to glucagon. Angiotensin II also inhibited cAMP accumulation induced by either glucagon or epinephrine in Ca2+-depleted hepatocytes. When submaximal doses of hormone were employed such that cell cAMP was elevated only 3-4-fold (approximately 2 pmol cAMP/mg wet wt cells) inhibition by angiotensin II was correlated with a decrease in phosphorylase activation. The data demonstrate that inhibition of hepatic cAMP accumulation results in reduced metabolic responses to glucagon and epinephrine and do not support the contention that the hepatic actions of glucagon are independent of cAMP.  相似文献   

3.
Evidence suggesting that vicinal dithiols regulate immune-aggregate-induced vasoconstriction and glycogenolysis in the perfused rat liver was obtained. Phenylarsine oxide (PhAsO) and other tervalent organic arsenicals inhibited in a dose-dependent manner hepatic glycogenolysis, vasoconstriction, Ca2+ mobilization and the stimulated O2 consumption caused by immune-aggregate infusion. Polar tervalent and quinquivalent arsenicals were less effective than hydrophobic arsenicals. Prior infusion of Fc- but not Fab-fragments of IgG prevented partially immune-aggregate-stimulated hepatic metabolism, suggesting that immune aggregates elicit hepatic metabolic responses through Fc gamma receptors. The inhibitory action of PhAsO on immune-aggregate-stimulated hepatic glycogenolysis was unique; inhibition of glycogenolysis was not observed when phenylephrine, isoprenaline or glucagon was used as a stimulant. Although PhAsO might be expected to sequester cellular thiols, no significant change in the oxidation-reduction state of the major cellular thiol, glutathione, was found during PhAsO infusion. In addition, PhAsO exerted its effects without producing changes in hepatic adenine nucleotides and cyclic AMP. Evidence suggesting the involvement of vicinal dithiols was obtained through thiol-competition experiments using mono- and di-thiols. PhAsO inhibition of IgG-aggregate-stimulated hepatic vasoconstriction and glycogenolysis was reversed significantly by infusion of 2,3-dimercaptopropan-1-ol at 3-fold molar excess, whereas 2-mercaptoethanol at 40-fold molar excess was ineffective. The results of the present study provide evidence documenting the participation of vicinal dithiols during the coupling of hepatic immune-aggregate clearance by Kupffer cells with vasoconstriction of the hepatic vasculature (e.g. endothelial cells) and glycogenolysis (e.g. parenchymal cells).  相似文献   

4.
Rat liver hepatocytes were isolated by collagenase in vitro perfusion technique and the effect of epinephrine, glucagon and insulin on glycogenolysis was studied. Both glucagon and epinephrine at the concentration of 10?6M, stimulated gluconeogenesis by 80–100%. Addition of insulin (33 μUnits/ml) completely abolished the epinephrine-stimulated glycogenolysis whereas only 50% inhibition was observed with insulin in glucagon stimulated glycogenolysis. This stimulation was observed within 2–5 min after the addition of the hormones. These results suggest that hepatocytes isolated with low concentrations of collagenase retain glucagon, epinephrine and insulin receptor sites.  相似文献   

5.
Bruce JI  Straub SV  Yule DI 《Cell calcium》2003,34(6):431-444
An impressive array of cytosolic calcium ([Ca2+](i)) signals exert control over a broad range of physiological processes. The specificity and fidelity of these [Ca2+](i) signals is encoded by the frequency, amplitude, and sub-cellular localization of the response. It is believed that the distinct characteristics of [Ca2+](i) signals underlies the differential activation of effectors and ultimately cellular events. This "shaping" of [Ca2+](i) signals can be achieved by the influence of additional signaling pathways modulating the molecular machinery responsible for generating [Ca2+](i) signals. There is a particularly rich source of potential sites of crosstalk between the cAMP and the [Ca2+](i) signaling pathways. This review will focus on the predominant molecular loci at which these classical signaling systems interact to impact the spatio-temporal pattern of [Ca2+](i) signaling in non-excitable cells.  相似文献   

6.
7.
Adrenergic-stimulated glycogenolysis (estimated as glucose output) was determined in hepatocytes from 7, 14, 20, and 24 mo old male Fischer 344 rats. Glucose output in response to the beta adrenergic agonist isoproterenol was minimal at 7 mo but increased progressively with increasing age. At all ages the isoproterenol response was concentration dependent and was inhibited by the beta adrenergic antagonist propranolol. Stimulation of glucose output by the mixed alpha-beta agonist epinephrine also increased between 7 and 24 mo. Glycogenolytic responses to alpha agonist (assessed in the presence of epinephrine and excess beta antagonist), glucagon, and forskolin did not increase substantially with age and at 24 mo were less than the response to beta agonist. In hepatocyte homogenates adenylate cyclase activation by beta agonist but not glucagon and forskolin increased between 7 and 24 mo. These results suggest that adrenergic stimulation of glycogenolysis, which in young adult male rats is generally attributed to alpha adrenergic-mediated processes, becomes mediated predominantly by beta adrenergic-responsive adenylate cyclase during post-maturational aging.  相似文献   

8.
9.
Thecoupling mechanism between depletion of Ca2+ stores in theendoplasmic reticulum and plasma membrane store-operated ion channelsis fundamental to Ca2+ signaling in many cell types and hasyet to be completely elucidated. Using Ca2+release-activated Ca2+ (CRAC) channels in RBL-2H3 cells asa model system, we have shown that CRAC channels are maintained in theclosed state by an inhibitory factor rather than being opened by theinositol 1,4,5-trisphosphate receptor. This inhibitory role can befulfilled by the Drosophila protein INAD (inactivation-noafter potential D). The action of INAD requires Ca2+ andcan be reversed by a diffusible Ca2+ influx factor. Thusthe coupling between the depletion of Ca2+ stores and theactivation of CRAC channels may involve a mammalian homologue of INADand a low-molecular-weight, diffusible store-depletion signal.

  相似文献   

10.
Relationship between cAMP and Ca2+ fluxes in human platelet membranes   总被引:2,自引:0,他引:2  
The effect of cAMP (which involved a 23 kDa protein phosphorylation) has been studied on the Ca2+ uptake and Ca2+ release from a human platelet membrane vesicle fraction. It was tested in the presence of the catalytic subunit of the cAMP-dependent protein kinase (C Sub). The addition of C Sub increased the steady state level of the Ca2+ uptake into the membrane vesicles. The effect was enhanced when tested in the absence of Ca2+ precipitating agent. The response was proportional to the dose of C Sub. Moreover, the effect varied with the Ca2+ concentration. The effect of C Sub has been tested on the inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release. A phosphorylated state of the 23 kDa protein appeared to be necessary. Indeed, a phosphorylation inhibition prevented the IP3 effect and the addition of C Sub increased the percentage of released Ca2+ (without modification of the time course). However, the C Sub dose-dependent response was not linear. The effect of cAMP on the two functions (Ca2+ uptake and Ca2+ release) appears to be different. Therefore, these results led us to suggest a more complex role of cAMP in the regulation of platelet Ca2+ concentration.  相似文献   

11.
In the starfish, Asterias amurensis, three components in the jelly coat of eggs, namely acrosome reaction-inducing substance (ARIS), Co-ARIS and asterosap, act in concert on homologous spermatozoa to induce the acrosome reaction (AR). Molecular recognition between the sperm surface molecules and the egg jelly molecules must underlie signal transduction events triggering the AR. Asterosap is a sperm-activating molecule, which stimulates rapid synthesis of intracellular cGMP, pH and Ca(2+). This transient elevation of Ca(2+) level is caused by a K(+)-dependent Na(+)/Ca(2+) exchanger, and the increase of intracellular pH is sufficient for ARIS to induce the AR. The concerted action of ARIS and asterosap could induce elevate intracellular cAMP levels in starfish sperm and the sustained increase in [Ca(2+)], which is essential for the AR. The signaling pathway induced by these factors seems to be synergistically regulated to trigger the AR in starfish sperm.  相似文献   

12.
A perfused liver system incorporating a Ca2+-sensitive electrode was used to study the long-term effects of glucagon and cyclic AMP on the mobilization of Ca2+ induced by phenylephrine, vasopressin and angiotensin. At 1.3 mM extracellular Ca2+ the co-administration of glucagon (10 nM) or cyclic AMP (0.2 mM) and a Ca2+-mobilizing hormone led to a synergistic potentiation of Ca2+ uptake by the liver, to a degree which was dependent on the order of hormone administration. A maximum net amount of Ca2+ influx, corresponding to approx. 3800 nmol/g of liver (the maximum rate of influx was 400 nmol/min per g of liver), was induced when cyclic AMP or glucagon was administered about 4 min before vasopressin and angiotensin. These changes are over an order of magnitude greater than those induced by Ca2+-mobilizing hormones alone [Altin & Bygrave (1985) Biochem. J. 232, 911-917]. For a maximal response the influx of Ca2+ was transient and was essentially complete after about 20 min. Removal of the hormones was followed by a gradual efflux of Ca2+ from the liver over a period of 30-50 min; thereafter, a similar response could be obtained by a second administration of hormones. Dose-response measurements indicate that the potentiation of Ca2+ influx by glucagon occurs even at low (physiological) concentrations of the hormone. By comparison with phenylephrine, the stimulation of Ca2+ influx by vasopressin and angiotensin is more sensitive to low concentrations of glucagon and cyclic AMP, and can be correlated with a 20-50-fold increase in the calcium content of mitochondria. The reversible uptake of such large quantities of Ca2+ implicates the mitochondria in long-term cellular Ca2+ regulation.  相似文献   

13.
The factors regulating Ca2+ transport by isolated sarcoplasmic reticulum (SR) vesicles have been studied using the fluorescent indicator Fluo-3 to monitor extravesicular free [Ca2+]. ATP, in the presence of 5 mM oxalate, which clamps intravesicular [Ca2+] at approximately 10 microM, induced a rapid decline in Fluo-3 fluorescence to reach a limiting steady state level. This corresponds to a residual medium [Ca2+] of 100 to 200 nM, and has been defined as [Ca2+]lim, whilst thermodynamic considerations predict a level of less than 1 nM. This value is similar to that measured in intact muscle with Ca2+ fluophores, where it is presumed that sarcoplasmic free [Ca2+] is a balance between pump and leaks. Fluorescence of Fluo-3 at [Ca2+]lim was decreased 70% to 80% by histidine, imidazole and cysteine. The K0.5 value for histidine was 3 mM, suggesting that residual [Ca2+]lim fluorescence is due to Zn2+. The level of Zn2+ in preparations of SR vesicles, measured by atomic absorption, was 0.47+/-0.04 nmol/mg, corresponding to 0.1 mol per mol Ca-ATPase. This is in agreement with findings of Papp et al. (Arch. Biochem. Biophys., 243 (1985) 254-263). Histidine, 20 mM, included in the buffer, gave a corrected value for [Ca2+]lim of 49+/-1.8 nM, which is still higher than predicted on thermodynamic grounds. A possible 'pump/leak' mechanism was tested by the effects of varying active Ca2+ transport 1 to 2 orders with temperature and pH. [Ca2+]lim remained relatively constant under these conditions. Alternate substrates acetyl phosphate and p-NPP gave similar [Ca2+]lim levels even though the latter substrate supported transport 500-fold slower than with ATP. In fact, [Ca2+]lim was lower with 10 mM p-NPP than with 5 mM ATP. The magnitude of passive efflux from Ca-oxalate loaded SR during the steady state of [Ca2+]lim was estimated by the unidirectional flux of 45Ca2+, and directly, following depletion of ATP, by measuring release of 40Ca2+, and was 0.02% of Vmax. Constant infusion of CaCl2 at [Ca2+]lim resulted in a new steady state, in which active transport into SR vesicles balances the infusion rate. Varying infusion rates allows determination of [Ca2+]-dependence of transport in the absence of chelating agents. Parameters of non-linear regression were Vmax=853 nmol/min per mg, K0.5(Ca)=279 nM, and nH(Ca)=1.89. Since conditions employed in this study are similar to those in the sarcoplasm of relaxed muscle, it is suggested that histidine, added to media in studies of intracellular Ca2+ transients, and in the relaxed state, will minimise contribution of Zn2+ to fluophore fluorescence, since it occurs at levels predicted in this study to cause significant overestimation of cytoplasmic free [Ca2+] in the relaxed state. Similar precautions may apply to non-muscle cells as well. This study also suggests that [Ca2+]lim in the resting state is a characteristic feature of Ca2+ pump function, rather than a balance between active transport and passive leakage pathways.  相似文献   

14.
Elevation of intracellular cAMP is shown to increase the rate (V) and maximal extent of Ca2+ uptake by the dense tubules in intact human platelets. Elevation of [cAMP] was accomplished by preincubation with the adenylate cyclase activator forskolin or with dibutyryl-cAMP (Bt2-cAMP). The free concentration of Ca2+ in the dense tubular lumen ([Ca2+]dt) was monitored using the fluorescence of chlorotetracycline (CTC) according to protocols developed in this laboratory. The free cytoplasmic Ca2+ concentration ([Ca2+]cyt) was monitored in parallel experiments with quin2. Both [Ca2+]cyt and [Ca2+]dt were analyzed in terms of competition between pump and leak mechanisms in the plasma membrane (PM) and dense tubular membrane (DT). When platelets are incubated in media with approx. 1 microM external Ca2+, [Ca2+]cyt is approx. 50 nM and [Ca2+]dt is very low. When 2 mM external Ca2+ is added, [Ca2+]cyt rises to approx. 100 nM and the process of dense tubular Ca2+ uptake can be resolved. Forskolin (10 microM) and Bt2-cAMP increase the rate of dense tubular Ca2+ uptake (V) to 2.1 +/- 0.60 and 1.70 +/- 40 times control values (respectively). The agents also increase the final [Ca2+]dt to 1.70 +/- 0.21 and 1.72 +/- 0.60 times control values (respectively). Titrations with ionomycin (Iono) showed that the increase was due to an increase in the Vm of the dense tubular Ca2+ pump. With [Iono] = 500 nM, [Ca2+]cyt was raised to greater than or equal to 1.0 microM and Vm of the dense tubular pump was elicited. (At [Iono] = 1.0 microM, the final [Ca2+]dt values were degraded 15% due to shunting of Ca2+ uptake.) Analysis showed that forskolin (10 microM) and Bt2-cAMP (1 mM) increase the Vm by a factors of 1.56 +/- 40 and 1.56 +/- 40, respectively. Analysis showed that neither agent changed the Km of the pump significantly from its control value of 180 nM. Neither agent changed the rate constant for passive leakage of Ca2+ across the DT membrane (1.7 min-1).  相似文献   

15.
The paper analyzes the relationship between membrane potential (delta psi), steady state pCao (-log [Ca2+] in the outer aqueous phase) and rate of ruthenium-red-induced Ca2+ efflux in liver mitochondria. Energized liver mitochondria maintain a pCao of about 6.0 in the presence of 1.5 mM Mg2+ and 0.5 mM Pi. A slight depression of delta psi results in net Ca2+ uptake leading to an increased steady state pCao. On the other hand, a more marked depression of delta psi results in net Ca2+ efflux, leading to a decreased steady-state pCao. These results reflect a biphasic relationship between delta psi and pCao, in that pCao increases with the increase of delta psi up to a value of about 130 mV, whereas a further increase of delta psi above 130 mV results in a decrease of pCao. The phenomenon of Ca2+ uptake following a depression of delta psi is independent of the tool used to affect delta psi whether by inward K+ current via valinomycin, or by inward H+ current through protonophores or through F1-ATP synthase, or by restriction of e- flow. The pathway for Ca2+ efflux is considerably activated by stretching of the inner membrane in hypotonic media. This activation is accompanied by a decreased pCao at steady state and by an increased rate of ruthenium-red-induced Ca2+ efflux. By restricting the rate of e- flow in hypotonically treated mitochondria, a marked dependence of the rate of ruthenium-red-induced Ca2+ efflux on the value of delta psi is observed, in that the rate of Ca2+ efflux increases with the value of delta psi. The pCao is linearly related to the rate of Ca2+ efflux. Activation of oxidative phosphorylation via addition of hexokinase + glucose to ATP-supplemented mitochondria, is followed by a phase of Ca2+ uptake, which is reversed by atractyloside. These findings support the view that Ca2+ efflux in steady state mitochondria occurs through an independent, delta psi-controlled pathway and that changes of delta psi during oxidative phosphorylation can effectively modulate mitochondrial Ca2+ distribution by inhibiting or activating the delta psi-controlled Ca2+ efflux pathway.  相似文献   

16.
17.
L Combettes  T R Cheek    C W Taylor 《The EMBO journal》1996,15(9):2086-2093
The quantal behaviour of inositol trisphosphate (InsP3) receptors allows rapid graded release of Ca2+ from intracellular stores, but the mechanisms are unknown. In Ca2+-depleted stores loaded with Fura 2, InsP3 caused concentration dependent increases in the rates of fluorescence quench by Mn2+ that were unaffected by prior incubation with InsP3, indicating that InsP3 binding did not cause desensitization. When Fura 2 was used to report the luminal free [Ca2+] after inhibition of further Ca2+ uptake, submaximal concentrations of InsP3 caused rapid, partial decreases in fluorescence ratios. Subsequent addition of a maximal InsP3 concentration caused the fluorescence to fall to within 5% of that recorded after ionomycin. Addition of all but the lowest concentrations of InsP3 to stores loaded with the lower affinity indicator, Calcium Green-5N, caused almost complete emptying of the stores at rates that increased with InsP3 concentration. The lowest concentration of InsP3 (10 nM) slowly emptied approximately 80% of the stores, but within 3 min the rate of Ca2+ release slowed leaving approximately 7 microM Ca2+ within the stores, which was then rapidly released by a maximal InsP3 concentration. In stores co-loaded with both indicators, InsP3-evoked Ca2+ release appeared quantal with Fura 2 and largely non-quantal with Calcium Green-5N; the discrepancy is not, therefore, a direct effect of the indicators. The fall in luminal [Ca2+] after activation of InsP3 receptors may, therefore, cause their inactivation, but only after the Ca2+ content of the stores has fallen by approximately 95% to < or = 10 microM.  相似文献   

18.
Neutrophils migrate towards sites of inflammation and infection by chemotaxis. Their motility is dependent on the actin cytoskeleton and on adhesion to extracellular substrates, but how these are regulated in response to stimuli is not clear. This review focuses on the potential role of Ca(2+) as a second messenger in neutrophil motility. Several effects of Ca(2+) and Ca(2+)-binding proteins on the stability and crosslinking of actin polymers have been demonstrated in vitro. Nevertheless, the complex mechanism by which Ca(2+) regulates actin in neutrophils is not fully understood. In addition, intracellular Ca(2+) regulates the intergin-mediated adhesion of neutrophils to extracellular matrix.  相似文献   

19.
The ubiquitous secondary messengers, Ca2+ and cAMP, play a vital role in shaping a diverse array of physiological processes. More significantly, accumulating evidence over the past several decades underpin extensive crosstalk between these two canonical messengers in discrete sub-cellular nanodomains across various cell types. Within such specialized nanodomains, each messenger fine-tunes signaling to maintain homeostasis by manipulating the activities of cellular machinery accountable for the metabolism or activity of the complementary pathway. Interaction between these messengers is ensured by scaffolding proteins which tether components of the signaling machinery in close proximity. Disruption of dynamic communications between Ca2+ and cAMP at these loci consequently is linked to several pathological conditions. This review summarizes recent novel mechanisms underlying effective crosstalk between Ca2+ and cAMP in such nanodomains.  相似文献   

20.
In nonexcitable cells, we had previously established that Ca(2+)-sensitive adenylyl cyclases, whether expressed endogenously or heterologously, were regulated exclusively by capacitative Ca(2+) entry (Fagan, K. A., Mahey, R. and Cooper, D. M. F. (1996) J. Biol. Chem. 271, 12438-12444; Fagan, K. A., Mons, N., and Cooper, D. M. F. (1998) J. Biol. Chem. 273, 9297-9305). Relatively little is known about how these enzymes are regulated by Ca(2+) in excitable cells, where they predominate. Furthermore, no effort has been made to determine whether the prominent voltage-gated Ca(2+) entry, which typifies excitable cells, overwhelms the effect of any capacitative Ca(2+) entry that may occur. In the present study, we placed the Ca(2+)-stimulable, adenylyl cyclase type VIII in an adenovirus vector to optimize its expression in the pituitary-derived GH(4)C(1) cell line. In these cells, a modest degree of capacitative Ca(2+) entry could be discerned in the face of a dramatic voltage-gated Ca(2+) entry. Nevertheless, both modes of Ca(2+) entry were equally efficacious at stimulating adenylyl cyclase. A striking release of Ca(2+) from intracellular stores, triggered either by ionophore or thyrotrophin-releasing hormone, was incapable of stimulating the adenylyl cyclase. It thus appears as though the intimate colocalization of adenylyl cyclase with capacitative Ca(2+) entry channels is an intrinsic property of these molecules, regardless of whether they are expressed in excitable or nonexcitable cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号