首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Strain BM108 of Escherichia coli has a chromosomal mutation in the rpmB , G operon that prevents synthesis of ribosomal proteins L28 and L33. The mutation was lethal unless synthesis of protein L28 was induced from a plasmid. Without protein L28, RNA and protein synthesis were linear rather than exponential. No 70S ribosomes were made. Instead, RNA accumulated in '30S material' and '47S particles'; the latter were distinct from 50S ribosomal subunits, lacked proteins L28 and L33 and had substoicheometric amounts of three other proteins. When L28 synthesis was induced (but protein L33 was still absent), the strain grew as well as, and assembled 70S ribosomes with similar kinetics to, a wild-type control. Thus, protein L28 is required for ribosome assembly in strain BM108 while protein L33 has no significant effect on ribosome synthesis or function.  相似文献   

4.
Helix 38 (H38) in 23 S rRNA, which is known as the "A-site finger (ASF)," is located in the intersubunit space of the ribosomal 50 S subunit and, together with protein S13 in the 30 S subunit, it forms bridge B1a. It is known that throughout the decoding process, ASF interacts directly with the A-site tRNA. Bridge B1a becomes disrupted by the ratchet-like rotation of the 30 S subunit relative to the 50 S subunit. This occurs in association with elongation factor G (EF-G)-catalyzed translocation. To further characterize the functional role(s) of ASF, variants of Escherichia coli ribosomes with a shortened ASF were constructed. The E. coli strain bearing such ASF-shortened ribosomes had a normal growth rate but enhanced +1 frameshift activity. ASF-shortened ribosomes showed normal subunit association but higher activity in poly(U)-dependent polyphenylalanine synthesis than the wild type (WT) ribosome at limited EF-G concentrations. In contrast, other ribosome variants with shortened bridge-forming helices 34 and 68 showed weak subunit association and less efficient translational activity than the WT ribosome. Thus, the higher translational activity of ASF-shortened ribosomes is caused by the disruption of bridge B1a and is not due to weakened subunit association. Single round translocation analyses clearly demonstrated that the ASF-shortened ribosomes have higher translocation activity than the WT ribosome. These observations indicate that the intrinsic translocation activity of ribosomes is greater than that usually observed in the WT ribosome and that ASF is a functional attenuator for translocation that serves to maintain the reading frame.  相似文献   

5.
The three consecutive G:C base pairs, G29:C41, G30:C40, and G31:C39, are conserved in the anticodon stem of virtually all initiator tRNAs from eubacteria, eukaryotes, and archaebacteria. We show that these G:C base pairs are important for function of the tRNA in initiation of protein synthesis in vivo. We changed these base pairs individually and in combinations and analyzed the activities of the mutant Escherichia coli initiator tRNAs in initiation in vivo. For assessment of activity of the mutant tRNAs in vivo, mutations in the G:C base pairs were coupled to mutation in the anticodon sequence from CAU to CUA. Mutations in each of the G:C base pairs reduced activity of the mutant tRNA in initiation, with mutation in the second G:C base pair having the most severe effect. The greatly reduced activity of this C30:G40 mutant tRNA is not due to defects in aminoacylation or formulation of the tRNA or defects in base modification of the A37, next to the anticodon, which we had previously shown to be important for activity of the mutant tRNAs in initiation. The anticodon stem mutants are most likely affected specifically at the step of binding to the ribosomal P site. The pattern of cleavages in the anticodon loop of mutant tRNAs by S1 nuclease indicate that the G:C base pairs may be involved directly in interactions of the tRNA with components of the P site on the ribosome rather than indirectly by inducing a particular conformation of the anticodon loop critical for function of the tRNA in initiation.  相似文献   

6.
Resistance to macrolide antibiotics is conferred by mutation of A2058 to G or methylation by Erm methyltransferases of the exocyclic N6 of A2058 (E. coli numbering) that forms the macrolide binding site in the 50S subunit of the ribosome. Ketolides such as telithromycin mitigate A2058G resistance yet remain susceptible to Erm-based resistance. Molecular details associated with macrolide resistance due to the A2058G mutation and methylation at N6 of A2058 by Erm methyltransferases were investigated using empirical force field-based simulations. To address the buried nature of the macrolide binding site, the number of waters within the pocket was allowed to fluctuate via the use of a Grand Canonical Monte Carlo (GCMC) methodology. The GCMC water insertion/deletion steps were alternated with Molecular Dynamics (MD) simulations to allow for relaxation of the entire system. From this GCMC/MD approach information on the interactions between telithromycin and the 50S ribosome was obtained. In the wild-type (WT) ribosome, the 2′-OH to A2058 N1 hydrogen bond samples short distances with a higher probability, while the effectiveness of telithromycin against the A2058G mutation is explained by a rearrangement of the hydrogen bonding pattern of the 2′-OH to 2058 that maintains the overall antibiotic-ribosome interactions. In both the WT and A2058G mutation there is significant flexibility in telithromycin''s imidazole-pyridine side chain (ARM), indicating that entropic effects contribute to the binding affinity. Methylated ribosomes show lower sampling of short 2′-OH to 2058 distances and also demonstrate enhanced G2057-A2058 stacking leading to disrupted A752-U2609 Watson-Crick (WC) interactions as well as hydrogen bonding between telithromycin''s ARM and U2609. This information will be of utility in the rational design of novel macrolide analogs with improved activity against methylated A2058 ribosomes.  相似文献   

7.
8.
The rpmBG operon of Escherichia coli codes for ribosomal proteins L28 and L33. Two strains with mutations in the operon are AM81, whose ribosomes lack protein L28, and AM90, whose ribosomes are without protein L33. Neither strain showed major defects in ribosome assembly. However, when the mutations were transferred to other strains of E. coli, ribosome synthesis was greatly perturbed and precursor ribonucleoproteins accumulated. In the new backgrounds, the mutation in rpmB was complemented by synthesis of protein L28 from a plasmid; the rpmG mutation was not complemented by protein L33 because synthesis of protein L28 from the upstream rpmB gene was also greatly reduced. The results suggest that protein L33, in contrast to protein L28, has at best a minor role in ribosome assembly and function.  相似文献   

9.
Helix 2 of the central pseudoknot structure in Escherichia coli 16S rRNA is formed by a long-distance interaction between nt 17-19 and 918-916, resulting in three base pairs: U17-A918, C18-G917and A19-U916. Previous work has shown that disruption of the central base pair abolishes ribosomal activity. We have mutated the first and last base pairs and tested the mutants for their translational activity in vivo , using a specialized ribosome system. Mutations that disrupt Watson-Crick base pairing result in strongly impaired translational activity. An exception is the mutation U916-->G, creating an A.G pair, which shows almost no decrease in activity. Mutations that maintain base complementarity have little or no impact on translational efficiency. Some of the introduced base pair substitutions substantially alter the stability of helix 2, but this does not influence ribosome functioning, neither at 42 nor at 28 degrees C. Therefore, our results do not support models in which the pseudoknot is periodically disrupted. Rather, the central pseudoknot structure is suggested to function as a permanent structural element necessary for proper organization in the center of the 30S subunit.  相似文献   

10.
The locations of the 3' ends of RNAs in rat ribosome were studied by a fluorescence-labeling method combined with high hydrostatic pressure and agarose electrophoresis. Under physiological conditions, only the 3' ends of 28 S and 5.8 S RNA in 80 S ribosome could be labeled with a high sensitive fluorescent probe - fluorescein 5-thiosemicarbazide (FTSC), indicating that the 3' termini of 28 S and 5.8 S RNA were located on or near the surface of 80 S ribosome. The 3' terminus of 5 S RNA could be attacked by FTSC only in the case of the dissociation of the 80 S ribosome into two subunits induced by high salt concentration (1 M KCl) or at high hydrostatic pressure, showing that the 3' end of 5 S RNA was located on the interface of two subunits. However, no fluorescence-labeled 18 S RNA could be detected under all the conditions studied, suggesting that the 3' end of 18 S RNA was either located deeply inside ribosome or on the surface but protected by proteins. It was interesting to note that modifications of the 3' ends of ribosomal RNAs including oxidation with NaIO4, reduction with KBH4 and labeling with fluorescent probe did not destroy the translation activity of ribosome, indicating that the 3' ends of RNAs were not involved in the translation activity of ribosome.  相似文献   

11.
The translocation of ribosomes on mRNA is carried out by cellular machinery that has been extremely well conserved across the entire spectrum of living species. This process requires elongation factor G (EF-G, or EF-2 in archaebacteria and eukaryotes), which is a member of the GTPase superfamily. Using genetic techniques, we have identified a series of mutated alleles of fusA (the Escherichia coli gene that encodes EF-G) that were unable to support protein synthesis in vivo. These alleles encode proteins with point mutations at codons 495 (a variant with a Q-to-P change at codon 495 [Q495P]), 502 (G502D), and 563 (G563D) and a nonsense mutation at codon 608. Biochemical analyses demonstrated that EF-G Q495P, G502D, and delta 608-703 were not disrupted in guanine nucleotide binding but were deficient in ribosome-dependent GTP hydrolysis and guanine nucleotide-dependent ribosome association. We propose that all of these mutations are present in a domain that is essential for ribosome association and that GTP hydrolysis was deficient as a secondary consequence of impaired binding to 70S ribosomes.  相似文献   

12.
Translation of the TnaC nascent peptide inhibits ribosomal activity in the presence of l-tryptophan, inducing expression of the tnaCAB operon in Escherichia coli. Using chemical methylation, this work reveals how interactions between TnaC and the ribosome are affected by mutations in both molecules. The presence of the TnaC-tRNA(Pro) peptidyl-tRNA within the ribosome protects the 23S rRNA nucleotide U2609 against chemical methylation. Such protection was not observed in mutant ribosomes containing changes in 23S rRNA nucleotides of the A748-A752 region. Nucleotides A752 and U2609 establish a base-pair interaction. Most replacements of either A752 or U2609 affected Trp induction of a TnaC-regulated LacZ reporter. However, the single change A752G, or the dual replacements A752G and U2609C, maintained Trp induction. Replacements at the conserved TnaC residues W12 and D16 also abolished the protection of U2609 by TnaC-tRNA(Pro) against chemical methylation. These data indicate that the TnaC nascent peptide in the ribosome exit tunnel interacts with the U2609 nucleotide when the ribosome is Trp responsive. This interaction is affected by mutational changes in exit tunnel nucleotides of 23S rRNA, as well as in conserved TnaC residues, suggesting that they affect the structure of the exit tunnel and/or the nascent peptide configuration in the tunnel.  相似文献   

13.
The conserved 900 tetraloop that caps helix 27 of 16S ribosomal RNA (rRNA) interacts with helix 24 of 16S rRNA and also with helix 67 of 23S rRNA, forming the intersubunit bridge B2c, proximal to the decoding center. In previous studies, we investigated how the interaction between the 900 tetraloop and helix 24 participates in subunit association and translational fidelity. In the present study, we investigated whether the 900 tetraloop is involved in other undetected interactions with different regions of the Escherichia coli 16S rRNA. Using a genetic complementation approach, we selected mutations in 16S rRNA that compensate for a 900 tetraloop mutation, A900G, which severely impairs subunit association and translational fidelity. Mutations were randomly introduced in 16S rRNA, using either a mutagenic XL1-Red E. coli strain or an error-prone PCR strategy. Gain-offunction mutations were selected in vivo with a specialized ribosome system. Two mutations, the deletion of U12 and the U12C substitution, were thus independently selected in helix 1 of 16S rRNA. This helix is located in the vicinity of helix 27, but does not directly contact the 900 tetraloop in the crystal structures of the ribosome. Both mutations correct the subunit association and translational fidelity defects caused by the A900G mutation, revealing an unanticipated functional interaction between these two regions of 16S rRNA.  相似文献   

14.
The Escherichia coli RrmJ (FtsJ) heat shock protein functions as an rRNA methyltransferase that modifies position U2552 of 23S rRNA in intact 50S ribosomal subunits. An in-frame deletion of the rrmJ (ftsJ) gene leads to severe growth disadvantages under all temperatures tested and causes significant accumulation of ribosomal subunits at the expense of functional 70S ribosomes. To investigate whether overexpression of other E. coli genes can restore the severe growth defect observed in rrmJ null mutants, we constructed an overexpression library from the rrmJ deletion strain and cloned and identified the E. coli genes that were capable of rescuing the rrmJ mutant phenotype. Our intention was to identify other methylases whose specificities overlapped enough with that of RrmJ to allow complementation when overexpressed. To our great surprise, no methylases were found by this method; rather, two small GTPases, Obg (YhbZ) and EngA, when overexpressed in the rrmJ deletion strains, were found to restore the otherwise severely impaired ribosome assembly process and/or stability of 70S ribosomes. 50S ribosomal subunits prepared from these overexpressing strains were shown to still serve as in vitro substrates for purified RrmJ, indicating that the 23S rRNA likely was still lacking the highly conserved Um2552 modification. The apparent lack of this modification, however, no longer caused ribosome defects or a growth disadvantage. Massive overexpression of another related small GTPase, Era, failed to rescue the growth defects of an rrmJ strain. These findings suggest a hitherto unexpected connection between rRNA methylation and GTPase function, specifically that of the two small GTPases Obg and EngA.  相似文献   

15.
Escherichia coli YjeQ represents a conserved group of bacteria-specific nucleotide-binding proteins of unknown physiological function that have been shown to be essential to the growth of E. coli and Bacillus subtilis. The protein has previously been characterized as possessing a slow steady-state GTP hydrolysis activity (8 h(-1)) (D. M. Daigle, L. Rossi, A. M. Berghuis, L. Aravind, E. V. Koonin, and E. D. Brown, Biochemistry 41: 11109-11117, 2002). In the work reported here, YjeQ from E. coli was found to copurify with ribosomes from cell extracts. The copy number of the protein per cell was nevertheless low relative to the number of ribosomes (ratio of YjeQ copies to ribosomes, 1:200). In vitro, recombinant YjeQ protein interacted strongly with the 30S ribosomal subunit, and the stringency of that interaction, revealed with salt washes, was highest in the presence of the nonhydrolyzable GTP analog 5'-guanylylimidodiphosphate (GMP-PNP). Likewise, association with the 30S subunit resulted in a 160-fold stimulation of YjeQ GTPase activity, which reached a maximum with stoichiometric amounts of ribosomes. N-terminal truncation variants of YjeQ revealed that the predicted OB-fold region was essential for ribosome binding and GTPase stimulation, and they showed that an N-terminal peptide (amino acids 1 to 20 in YjeQ) was necessary for the GMP-PNP-dependent interaction of YjeQ with the 30S subunit. Taken together, these data indicate that the YjeQ protein participates in a guanine nucleotide-dependent interaction with the ribosome and implicate this conserved, essential GTPase as a novel factor in ribosome function.  相似文献   

16.
S5 is a small subunit ribosomal protein (r-protein) linked to the functional center of the 30S ribosomal subunit. In this study we have identified a unique amino acid mutation in Escherichia coli S5 that produces spectinomycin-resistance and cold sensitivity. This mutation significantly alters cell growth, folding of 16S ribosomal RNA, and translational fidelity. While translation initiation is not affected, both +1 and -1 frameshifting and nonsense suppression are greatly enhanced in the mutant strain. Interestingly, this S5 ribosome ambiguity-like mutation is spatially remote from previously identified S5 ribosome ambiguity (ram) mutations. This suggests that the mechanism responsible for ram phenotypes in the novel mutant strain is possibly distinct from those proposed for other known S5 (and S4) ram mutants. This study highlights the importance of S5 in ribosome function and cell physiology, and suggests that translational fidelity can be regulated in multiple ways.  相似文献   

17.
18.
Peptide bond formation on the ribosome is catalyzed by RNA. Kinetic studies using Escherichia coli ribosomes have shown that catalysis (>10(5)-fold overall acceleration) is due to a large part to substrate positioning. However, peptide bond formation is inhibited approximately 100-fold by protonation of a ribosomal group with pKa=7.5, indicating either a contribution of general acid-base catalysis or inhibition by a pH-dependent conformational change within the active site. The function of a general base has been attributed to A2451 of 23S rRNA, and a charge relay system involving G2447 has been postulated to bring about the extensive pKa shift of A2451 implied in the model. Using a rapid kinetic assay, we found that the G2447A mutation, which has essentially no effect on cell growth, lowers the rate of peptide bond formation about 10-fold and does not affect the ionization of the ribosomal group with pKa=7.5 taking part in the reaction. This result does not support the proposed charge relay mechanism involving G2447 and the role of A2451 as general base in the catalysis of peptide bond formation.  相似文献   

19.
Structural analyses have shown that nucleotides at the positions 770 and 771 of Escherichia coli 16S rRNA are implicated in forming one of highly conserved intersubunit bridges of the ribosome, B2c. To examine a functional role of these residues, base substitutions were introduced at these positions and mutant ribosomes were analyzed for their protein synthesis ability using a specialized ribosome system. The results showed requirement of a pyrimidine at the position 770 for ribosome function regardless of the nucleotide identity at the position 771. Sucrose gradient profiles of ribosomes revealed that the loss of protein-synthesis ability of mutant ribosome bearing a base substitution from C to G at the position 770 stems from its inability to form 70S ribosomes. These findings indicate involvement of nucleotide at the position 770, not 771, in ribosomal subunit association and provide a useful rRNA mutation that can be used as a target to investigate the physical interaction between 16S and 23S rRNA.  相似文献   

20.
Elongation factor Tu (EF-Tu) undergoes a large conformational transition when switching from the GTP to GDP forms. Structural changes in the switch I and II regions in the G domain are particularly important for this rearrangement. In the switch II region, helix alpha2 is flanked by two glycine residues: Gly(83) in the consensus element DXXG at the N terminus and Gly(94) at the C terminus. The role of helix alpha2 was studied by pre-steady-state kinetic experiments using Escherichia coli EF-Tu mutants where either Gly(83), Gly(94), or both were replaced with alanine. The G83A mutation slows down the association of the ternary complex EF-Tu.GTP.aminoacyl-tRNA with the ribosome and abolishes the ribosome-induced GTPase activity of EF-Tu. The G94A mutation strongly impairs the conformational change of EF-Tu from the GTP- to the GDP-bound form and decelerates the dissociation of EF-Tu.GDP from the ribosome. The behavior of the double mutant is dominated by the G83A mutation. The results directly relate structural transitions in the switch II region to specific functions of EF-Tu on the ribosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号