首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To investigate involvement of the central nervous system in the ontogeny of behaviour, diets of differing quality were used to rear yellowtail Seriola quinqueradiata larvae and juveniles. Artemia nauplii enriched with oleic acid (OA), eicosapentaenoic acid (EPA), or two different concentration levels of docosahexaenoic acid (DHA) were fed to yellowtail larvae (LT 7 mm; 13 days old) for 12 days, and their behavioural development was analysed together with growth, survival, activity and fatty acid composition. Yellowtail fed with DHA–enriched Artemia showed mutual attraction behaviour at 11 mm LT, while those fed with OA– or EPA–enriched Artemia did not show this behaviour at the same size. While fish in the OA group showed poor growth, survival and activity index, fish in the EPA group were similar to the two DHA groups. In addition, most fish tested, including the OA group, showed clear optokinetic responses. Fatty acid composition of the diet was reflected in that of the fish body. Therefore, dietary DHA in the larval stage is considered to be essential for the development of schooling behaviour in the yellowtail.  相似文献   

2.
Dietary n-6 polyunsaturated fatty acid (PUFA) deprivation in rodents reduces brain arachidonic acid (20:4n-6) concentration and 20:4n-6-preferring cytosolic phospholipase A(2) (cPLA(2) -IVA) and cyclooxygenase (COX)-2 expression, while increasing brain docosahexaenoic acid (DHA, 22:6n-3) concentration and DHA-selective calcium-independent phospholipase A(2) (iPLA(2) )-VIA expression. We hypothesized that these changes are accompanied by up-regulated brain DHA metabolic rates. Using a fatty acid model, brain DHA concentrations and kinetics were measured in unanesthetized male rats fed, for 15 weeks post-weaning, an n-6 PUFA 'adequate' (31.4 wt% linoleic acid) or 'deficient' (2.7 wt% linoleic acid) diet, each lacking 20:4n-6 and DHA. [1-(14) C]DHA was infused intravenously, arterial blood was sampled, and the brain was microwaved at 5 min and analyzed. Rats fed the n-6 PUFA deficient compared with adequate diet had significantly reduced n-6 PUFA concentrations in brain phospholipids but increased eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid n-3 (DPAn-3, 22:5n-3), and DHA (by 9.4%) concentrations, particularly in ethanolamine glycerophospholipid (EtnGpl). Incorporation rates of unesterified DHA from plasma, which represent DHA metabolic loss from brain, were increased 45% in brain phospholipids, as was DHA turnover. Increased DHA metabolism following dietary n-6 PUFA deprivation may increase brain concentrations of antiinflammatory DHA metabolites, which with a reduced brain n-6 PUFA content, likely promotes neuroprotection and alters neurotransmission.  相似文献   

3.
Light intensity and schooling behaviour in larval gulf menhaden   总被引:1,自引:0,他引:1  
Schooling behaviour was examined in larval gulf menhaden Brevoortia patronus under decreasing and increasing light intensities and related to movements of retinal photoreceptors and pigment. Nearest neighbour angles and nearest neighbour distances between fish were inversely related to light intensity and were independent of the direction of intensity change. Swimming speeds of individual fish were directly related to light intensity when intensity was decreased but did not increase when intensity was raised. The changes in nearest neighbour angles and distances more closely paralleled movements of retinal pigment cells than cone cell migration, suggesting that rod photoreceptors play a greater role than cones in determining the threshold light intensity for schooling. A general model is developed relating the threshold light intensity for schooling to eye diameter for a number of different species and the implications of this relationship are discussed.  相似文献   

4.
Previously, we demonstrated that ablation of alpha-synuclein (Snca) reduces arachidonate (20:4n-6) turnover in brain phospholipids through modulation of an endoplasmic reticulum-localized acyl-CoA synthetase (Acsl). The effect of Snca ablation on docosahexaenoic acid (22:6n-3) metabolism is unknown. In the present study, we examined the effect of Snca gene ablation on brain 22:6n-3 metabolism. We determined 22:6n-3 uptake and incorporation into brain phospholipids by infusing awake, wild-type and Snca-/- mice with [1-14C]22:6n-3 using steady-state kinetic modeling. In addition, because Snca modulates 20:4n-6-CoA formation, we assessed microsomal Acsl activity using 22:6n-3 as a substrate. Although Snca gene ablation does not affect brain 22:6n-3 uptake, brain 22:6n-3-CoA mass was elevated 1.5-fold in the absence of Snca. This is consistent with the 1.6- to 2.2-fold increase in the incorporation rate and turnover in ethanolamine glycerophospholipid, phosphatidylserine, and phosphatidylinositol pools. Increased 22:6n-3-CoA mass was not the result of altered Acsl activity, which was unaffected by the absence of Snca. While Snca bound 22:6n-3, Kd = 1.0 +/- 0.5 micromol/L, it did not bind 22:6n-3-CoA. These effects of Snca gene deletion on 22:6n-3 brain metabolism are opposite to what we reported previously for brain 20:4n-6 metabolism and are likely compensatory for the decreased 20:4n-6 metabolism in brains of Snca-/- mice.  相似文献   

5.
The timing of the development of schooling behaviour in Atlantic herring Clupea harengus and the quantitative and qualitative evolution of such behaviour in the larval and post-metamorphic stages were investigated with a simulation model and experimental observations of laboratory-reared fish. Herring larvae started to develop schooling behaviour between the lengths of 35 and 40 mm. This coincided with the beginning of metamorphosis, characterized by ontogenetic changes which require a switch to a different antipredator strategy from that employed by early larvae, while providing the sensory and anatomical mechanisms necessary for the formation of schools. Schooling behaviour was established at the end of metamorphosis (50–55 mm) and its characteristics continued to evolve throughout the early juvenile stage. A critical period in terms of vulnerability to predation is expected between the end of the larval and beginning of the juvenile stages, before schooling behaviour is fully developed. The implications of some of the results for the methodology of future studies are also discussed.  相似文献   

6.
Adult male unanesthetized rats, reared on a diet enriched in both alpha-linolenic acid (alpha-LNA) and docosahexaenoic acid (DHA), were infused intravenously for 5 min with [1-(14)C]alpha-LNA. Timed arterial samples were collected until the animals were killed at 5 min and the brain was removed after microwaving. Plasma and brain lipid concentrations and radioactivities were measured. Within plasma lipids, > 99% of radioactivity was in the form of unchanged [1-(14)C]alpha-LNA. Eighty-six per cent of brain radioactivity at 5 min was present as beta-oxidation products, whereas the remainder was mainly in 'stable' phospholipid or triglyceride as alpha-LNA or DHA. Equations derived from kinetic modeling demonstrated that unesterified unlabeled alpha-LNA rapidly enters brain from plasma, but that its incorporation into brain phospholipid and triglyceride, as in the form of synthesized DHA, is < or = 0.2% of the amount that enters the brain. Thus, in rats fed a diet containing large amounts of both alpha-LNA and DHA, the alpha-LNA that enters brain from plasma largely undergoes beta-oxidation, and is not an appreciable source of DHA within brain phospholipids.  相似文献   

7.
The onset and development of cannibalistic behaviour were observed in early life stages of yellowtail Seriola quinqueradiata . Cannibalistic behaviour was divided into four actions, i.e aim, chase, nip and ingestion. The frequency of chase was used as an index of cannibalistic behaviour because it always appeared in every sequence of cannibalism, although a sequence of cannibalistic behaviour sometimes stopped before nip or ingestion. No cannibalistic behaviour was observed during the larval phase until day 22 after hatching (when fish were 9.6mm T.L.) either in a rearing pond or in experimental tanks. The onset of cannibalistic behaviour was observed on day 23, coinciding with metamorphosis from the larval to juvenile phase, and it developed until day 39, with a tentative decrease between day 33 and day 36. This inverted peak corresponded roughly to the development of schooling behaviour after day 33, which was determined by distance to the nearest neighbour. In the rearing pond, suffocation of a cannibal by its prey, appeared from day 23. Field observation of juvenile yellowtails aggregating around floating seaweeds showed that cannibalism occurred in three out of 10 schools, in which six cannibals were found among 194 fish. Cannibalistic behaviour in early life stages of yellowtail may occur as a final phase of inter-individual interference and may have a role for size selection of a School member.  相似文献   

8.
Laboratory experiments were performed on the schooling and feeding behaviour of Trichogaster fasciatus . There was a tendency on the part of individuals of similar size to school together; the instinct being stronger in younger specimens. Unavailability of similar-sized individuals led to schooling by members of different size-groups. Column feeding was exhibited by the fish. While feeding at the bottom, the fishes formed angles varying from 30°90°. Larger individuals formed a right angle more often than younger members of the species. Optimum degree of crowding seemed necessary for active feeding as confinement of single individual, or overcrowded condition, both resulted in a decline of feeding activity.  相似文献   

9.
Schools of herring exposed to progressive hypoxia show a peak in velocity during severe hypoxia, at 15–34% oxygen saturation, followed by a decrease in swimming speed until school disruption occurred. The observed increase in swimming speed during severe hypoxia reveals a graded response, since the lower the fish's swimming speed prior to severe hypoxia ( U 95−50, the speed at oxygen saturations between 95 and 50%), the greater the relative increase in swimming speed. The oxygen saturations at which both peak velocity and school disruption occurred were lower for fish with lowest U 95−50, suggesting that the fish with the slowest speed U 95−50 reach their critical PO2 (at which there is respiratory distress) last, i.e. at lower oxygen saturation. At a functional level, it is suggested that herring encountering hypoxia increase their speed in order to find more favourable conditions, and the magnitude of this increase is modulated by their respiratory distress. It is also hypothesised that the observed increase in speed may be related to an increase in the rate of position shifting within the school. Since the oxygen saturation at which the response to hypoxia occurs and the magnitude of the response are related to the fish's preferred speed prior to severe hypoxia, it is suggested that such a preferred speed should be measured in experiments testing the effect of hypoxia on fish behaviour.  相似文献   

10.
11.
Docosahexaenoic acid (DHA), an n-3 fatty acid, is rapidly deposited during the period of rapid brain development. The influence of n-3 fatty acid deficiency on learning performance in adult rats over two generations was investigated. Rats were fed either an n-3 fatty acid-adequate (n-3 Adq) or -deficient (n-3 Def) diet for three generations (F1-F3). Levels of total brain n-3 fatty acids were reduced in the n-3 Def group by 83 and 87% in the F2 and F3 generations, respectively. In the Morris water maze, the n-3 Def group showed a longer escape latency and delayed acquisition of this task compared with the n-3 Adq group in both generations. The acquisition and memory levels of the n-3 Def group in the F3 generation seemed to be lower than that of the F2 generation. The 22:5n-6/22:6n-3 ratio in the frontal cortex and dams' milk was markedly increased in the n-3 Def group, and this ratio was significantly higher in the F3 generation compared with the F2 generation. These results suggest that learning and cognitive behavior are related to brain DHA status, which, in turn, is related to the levels of the milk/dietary n-3 fatty acids.  相似文献   

12.
Abstract

The effects of fish oil for improving mental health have been reported. The present study was undertaken to compare the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on anxiety-like behavior using a rat model. Experimental diets enriched in EPA or DHA as glycerides were prepared. Rats were exposed to social isolation stress and fed the experimental diet for 14 days. The results of behavioral tests revealed that rats fed the EPA-enriched diet exhibited less anxiety-like behavior than rats fed the control or DHA-enriched diets. Furthermore, EPA suppressed anxiety-like behavior only in socially isolated rats. The increase in EPA contents in the brain phospholipid fraction by feeding EPA-enriched diet was more significant than that of DHA by feeding DHA-enriched diet. These results suggest that dietary EPA is more anxiolytic than DHA in rats exposed to social isolation stress and is effective in increasing EPA content in brain membranes.  相似文献   

13.
This study determined the sensitivity of heart and brain arachidonic acid (ARA) and docosahexaenoic acid (DHA) to the dietary ARA level in a dose–response design with constant, high DHA in neonatal piglets. On day 3 of age, pigs were assigned to 1 of 6 dietary formulas varying in ARA/DHA as follows (% fatty acid, FA/FA): (A1) 0.1/1.0; (A2) 0.53/1.0; (A3–D3) 0.69/1.0; (A4) 1.1/1.0; (D2) 0.67/0.62; and (D1) 0.66/0.33. At necropsy (day 28) higher levels of dietary ARA were associated with increased heart and liver ARA, while brain ARA remained unaffected. Dietary ARA had no effect on tissue DHA accretion. Heart was particularly sensitive, with pigs in the intermediate groups having different ARA (A2, 18.6±0.7%; A3, 19.4±1.0%) and a 0.17% increase in dietary ARA resulted in a 0.84% increase in heart ARA. Further investigations are warranted to determine the clinical significance of heart ARA status in developing neonates.  相似文献   

14.
The consequences of maternal linolenic acid (LNA, 18:3n-3) dietary deficiency on key dopamine (DA)-associated regulatory proteins in mesolimbic and mesocortical structures of the postnatal rat brain have been investigated. A marked (4.5-fold) decrease of the DA-synthesizing enzyme tyrosine hydroxylase accompanied by a down-regulation (approx 7.5-fold) of the vesicular monoamine transporter (VMAT-2) and a depletion of VMAT-associated vesicles in the hippocampus were observed in deficient offspring compared with adequately fed controls. The DA transporter (DAT) was not affected by the LNA deficiency indicative of a DAT/VMAT-2 ratio increase that may enhance the risk of damage of the dopaminergic (DAergic) terminal. A robust increase in DA receptor (DAR1 and DAR2) levels was noticed in the cortex and striatum structures possibly to compensate for the low levels of DA in synaptic clefts. Microglia activation characterized by enhanced levels of ED1 antibody and nuclear internalization of p65 NFκB was noticed following LNA deficiency. Diminished levels of 22:6n-3 docosahexaenoic acid ( Schiefermeier and Yavin 2002 ), the most ubiquitous metabolite generated by LNA is proposed to reduce the anti-oxidant arsenal in the developing brain and cause microglia activation and enhanced oxidative stress to increase the risk of certain DA-associated neurological disorders.  相似文献   

15.
The ontogeny of schooling behaviour in the striped jack   总被引:3,自引:0,他引:3  
The ontogeny of schooling behaviour was investigated in laboratory-reared striped jack Pseudocaranx dentex larvae and juveniles. Mean separation angle between nearest individuals averaged 78 and 82° in 10- and 12-mm fish, respectively, and decreased to 57° in 16-mm fish. In addition, interindividual distance decreased from three times body length in 12-mm fish to twice the body length in 16-mm individuals; this value continued to decrease gradually to 1·3 at 19 mm to 0·79 at 30 mm. Mutual attraction due to visual recognition was observed in 12-mm fish and increased with total length. The optokinetic response ( Ro , the ability of a fish to keep station with moving patterns) first appeared in 4–6-mm larvae. In spite of the traditional emphasis of the importance of Ro in schooling behaviour, the onset of Ro was insufficient to result in school formation. The emergence of mutual attraction seems essential for the ontogeny of schooling.  相似文献   

16.
17.
Evolution of the high order brain function in humans can be attributed to intake of poly unsaturated fatty acids (PUFAs) of which the ω-3 fatty acid, docosahexaenoic acid (DHA) has special significance. DHA is abundantly present in the human brain and is an essential requirement in every step of brain development like neural cell proliferation, migration, differentiation, synaptogenesis etc. The multiple double bonds and unique structure allow DHA to impart special membrane characteristics for effective cell signaling. Evidences indicate that DHA accumulate in areas of the brain associated with learning and memory. Many development disorders like dyslexia, autism spectrum disorder, attention deficit hyperactivity disorder, schizophrenia etc. are causally related to decreased level of DHA. The review discusses the various reports of DHA in these areas for a better understanding of the role of DHA in overall brain development. Studies involving laboratory animals and clinical findings in cases as well as during trials have been taken into consideration. Additionally the currently available dietary source of DHA for supplementation as nutraceutics with general caution for overuse has been examined.  相似文献   

18.
Male rat pups (21 days old) were placed on a diet deficient in n-3 polyunsaturated fatty acids (PUFAs) or on an n-3 PUFA adequate diet containing alpha-linolenic acid (alpha-LNA; 18 : 3n-3). After 15 weeks on a diet, [4,5-3H]docosahexaenoic acid (DHA; 22 : 6n-3) was injected into the right lateral cerebral ventricle, and the rats were killed at fixed times over a period of 60 days. Compared with the adequate diet, 15 weeks of n-3 PUFA deprivation reduced plasma DHA by 89% and brain DHA by 37%; these DHA concentrations did not change thereafter. In the n-3 PUFA adequate rats, DHA loss half-lives, calculated by plotting log10 (DHA radioactivity) against time after tracer injection, equaled 33 days in total brain phospholipid, 23 days in phosphatidylcholine, 32 days in phosphatidylethanolamine, 24 days in phosphatidylinositol and 58 days in phosphatidylserine; all had a decay slope significantly greater than 0 (p < 0.05). In the n-3 PUFA deprived rats, these half-lives were prolonged twofold or greater, and calculated rates of DHA loss from brain, Jout, were reduced. Mechanisms must exist in the adult rat brain to minimize DHA metabolic loss, and to do so even more effectively in the face of reduced n-3 PUFA availability for only 15 weeks.  相似文献   

19.
Production of hepatic docosahexaenoic acid in juvenile Clarias gariepinus was significantly increased ( P <0.05) by ingestion of rancid diets and this effect was modulated by dietary vitamin E. This has not been described previously in fish. Causal mechanisms are postulated.  相似文献   

20.
To determine how the level of dietary n-6 PUFA affects the rate of loss of arachidonic acid (ARA) and DHA in brain phospholipids, male rats were fed either a deprived or adequate n-6 PUFA diet for 15 weeks postweaning, and then subjected to an intracerebroventricular infusion of 3H-ARA or 3H-DHA. Brains were collected at fixed times over 128 days to determine half-lives and the rates of loss from brain phospholipids (Jout). Compared with the adequate n-6 PUFA rats, the deprived n-6-PUFA rats had a 15% lower concentration of ARA and an 18% higher concentration of DHA in their brain total phospholipids. Loss half-lives of ARA in brain total phospholipids and fractions (except phosphatidylserine) were longer in the deprived n-6 PUFA rats, whereas the Jout was decreased. In the deprived versus adequate n-6 PUFA rats, the Jout of DHA was higher. In conclusion, chronic n-6 PUFA deprivation decreases the rate of loss of ARA and increases the rate of loss of DHA in brain phospholipids. Thus, a low n-6 PUFA diet can be used to target brain ARA and DHA metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号