首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of transposing the C-15 hydroxy group of prostaglandin E1 methyl ester (PGE1ME) on gastric antisecretory and antiulcer actions was investigated. The compound (±)15-deoxy- 16α,β-hydroxy PGE1ME (SC-28904) was equipotent to the reference standard PGE1ME in suppressing histamine-stimulated gastric secretion in the Heidenhain pouch (HP) dog. In contrast to PGE1ME, SC-28904 was longer acting when administered intravenously and also showed significant oral activity in the histamine-stimulated gastric fistula dog. SC-28904 was also equipotent to PGE1ME (range of active doses of 0.5 to 5.0 mg/kg, s.c.) in inhibiting forced-exertion gastric ulceration in rats.The compound (±)15-deoxy-17α,β-hydroxy PGE1ME (SC-30693) was an inactive antisecretory agent in the dog at the 1.0 mg/kg i.v. bolus dose. This dose was 100 times greater than the active antisecretory dose of PGE1ME. Likewise, SC-30693, when administered subcutaneously at a 5.0 mg/kg dose, was also totally inactive in preventing gastric ulcers induced by forced exertion in rats.The important implications of this work are that some of the receptor sites for the PGE1 molecule could easily accommodate the side chain hydroxy group either in the C-15 or C-16 position. Moreover, the hydroxy group in the latter position significantly improved the biological activity of PGE1ME.  相似文献   

2.
The influence of transposing the C-15 hydroxy group of prostaglandin E1 methyl ester (PGE1ME) on gastric antisecretory and antiulcer actions was investigated. The compound (±)15-deoxy- 16,β-hydroxy PGE1ME (SC-28904) was equipotent to the reference standard PGE1ME in suppressing histamine-stimulated gastric secretion in the Heidenhain pouch (HP) dog. In contrast to PGE1ME, SC-28904 was longer acting when administered intravenously and also showed significant oral activity in the histamine-stimulated gastric fistula dog. SC-28904 was also equipotent to PGE1ME (range of active doses of 0.5 to 5.0 mg/kg, s.c.) in inhibiting forced-exertion gastric ulceration in rats.

The compound (±)15-deoxy- 17,β-hydroxy PGE1ME (SC-30693) was an inactive antisecretory agent in the dog at the 1.0 mg/kg i.v. bolus dose. This dose was 100 times greater than the active antisecretory dose of PGE1ME. Likewise, SC-30693, when administered subcutaneously at a 5.0 mg/kg dose, was also totally inactive in preventing gastric ulcers induced by forced exertion in rats.

The important implications of this work are that some of the receptor sites for the PGE1 molecule could easily accommodate the side chain hydroxy group either in the C-15 or C-16 position. Moreover, the hydroxy group in the latter position significantly improved the biological activity of PGE1ME.  相似文献   


3.
The influence of methyl esterification of the carboxyl group of PGE1 on the gastric antisecretory and antiulcer activities were studied. The gastric antisecretory effects of PGE1 free acid and PGE1 methyl ester (PGE1ME) were studied in the Heidenhain pouch dog. Secretion was stimulated with constant intravenous infusion of histamine dihydrochloride. When a steady-state plateau of gastric secretion had been reached, the prostaglandins were administered either by a single intravenous bolus (10.0 mug/kg) or by continuous infusion (1.0 mug/kg/min). PGE1ME was found to be slightly more potent and longer-acting than PFE1 when administered by a single i.v. bolus. PGE1ME was also shown to be more potent than PGE1 when infused intravenously for a two-hour period. PGE1ME caused a significant alteration in gastric juice concentration of hydrogen and sodium ions in an inverse relationship. Potassium and chloride concentration were not altered from pre-existing steady-state values following administration of either form of prostaglandin. Similarly, PGE1ME was also found to possess significantly greater antiulcer activity in the rat forced-exertion ulcer test. These findings support the hypothesis that methyl esterification of the prostaglandin molecule will increase some of the biological actions of PGE1 through inhibition of metabolic beta-oxidation of the carboxylic side chain.  相似文献   

4.
The compound 7-OPyA has been reported to antagonize smooth muscle stimulatory effects of some prostaglandins (PG's) in vitro. The in vivo PG antagonist activity of 7-OPyA has not been adequately diarrhea in mice. We studied the effects of this compound on PGE1. Secretion was stimulated by continuous intravenous infusion of histamine. At the steady-state plateau of gastric secretion, PGE1 methyl ester (PGE1 ME) or PGE1 ME and 7-OPyA were simultaneously infused intravenously. The extent of gastric secretory inhibition afforded by PGE1 ME alone or in the presence of 7-OPyA was assessed. 7-OPyA did not modify PGE1 ME gastric antisecretory actions when administered at doses 20-50 times greater than the dose of PGE1 ME. These results suggest that the prostaglandin antagonist effects of 7-OPyA show organ specificity, which may be of clinical importance.  相似文献   

5.
Neutrophil infiltration mediated by TNF-alpha is associated with various types of gastric injury, whereas PGs play a crucial role in gastric defense. We examined roles of two isoforms of cyclooxygenase (COX) and PGE2 in Helicobacter pylori-induced gastritis in mice. Mice infected with H. pylori were given selective COX-1 inhibitor SC-560 (10 mg/kg), selective COX-2 inhibitor NS-398 (10 mg/kg), or nonselective COX inhibitor indomethacin (2 mg/kg) with or without 16,16-dimethyl PGE2 for 1 wk. H. pylori infection increased levels of mRNA for COX-1 and -2 in gastric tissue by 1.2-fold and 3.3-fold, respectively, accompanied by a significant increase in PGE2 production by gastric tissue. H. pylori infection significantly elevated MPO activity, a marker of neutrophil infiltration, and epithelial cell apoptosis in the stomach. SC-560 augmented MPO activity and epithelial cell apoptosis with associated reduction in PGE2 production, whereas NS-398 had the same effects without affecting PGE2 production. Inhibition of both COX-1 and -2 by indomethacin or concurrent treatment with SC-560 and NS-398 resulted in a stronger increase in MPO activity and apoptosis than inhibition of either COX-1 or -2 alone. H. pylori infection elevated TNF-alpha mRNA expression in the stomach, which was further increased by indomethacin. Effects of COX inhibitors on neutrophil infiltration, apoptosis, and TNF-alpha expression in H. pylori-infected mice were abolished by exogenous 16,16-dimethyl PGE2. In conclusion, PGE2 derived from either COX-1 or -2 is involved in regulation of gastric mucosal inflammation and contributes to maintenance of mucosal integrity during H. pylori infection via inhibition of TNF-alpha expression.  相似文献   

6.
The influence of methyl esterification of the carboxyl group of PGE1 on the gastric antisecretory and antiulcer activities were studied. The gastric antisecretory effects of PGE1 free acid and PGE1 methyl ester (PGE1ME) were studied in the Heidenhain pouch dog. Secretion was stimulated with constant intravenous infusion of histamine dihydrochloride. When a steady-state plateau of gastric secretion had been reached, the prostaglandins were administered either by a single intravenous bolus (10.0 μg/kg) or by continuous infusion (1.0 μg/kg/min). PGE1ME was found to be slightly more potent and longer-acting than PGE1 when administered by a single i.v. bolus. PGE1ME was also shown to be more potent than PGE1 when infused intravenously for a two-hour period. PGE1ME caused a significant alteration in gastric juice concentration of hydrogen and sodium ions in an inverse relationship. Potassium and chloride concentration were not altered from pre-existing steady-state values following administration of either form of prostaglandin. Similarly, PGE1ME was also found to possess significantly greater antiulcer activity in the rat forced-exertion ulcer test. These findings support the hypothesis that methyl esterification of the prostaglandin molecule will increase some of the biological actions of PGE1 through inhibition of metabolic β-oxidation of the carboxylic side chain.  相似文献   

7.
The influence of methyl esterification of the carboxyl group of PGE1 on the gastric antisecretory and antiulcer activities were studied. The gastric antisecretory effects of PGE1 free acid and PGE1 methyl ester (PGE1ME) were studied in the Heidenhain pouch dog. Secretion was stimulated with constant intravenous infusion of histamine dihydrochloride. When a steady-state plateau of gastric secretion had been reached, the prostaglandins were administered either by a single intravenous bolus (10.0 μg/kg) or by continuous infusion (1.0 μg/kg/min). PGE1ME was found to be slightly more potent and longer-acting than PGE1 when administered by a single i.v. bolus. PGE1ME was also shown to be more potent than PGE1 when infused intravenously for a two-hour period. PGE1ME caused a significant alteration in gastric juice concentration of hydrogen and sodium ions in an inverse relationship. Potassium and chloride concentration were not altered from pre-existing steady-state values following administration of either form of prostaglandin. Similarly, PGE1ME was also found to possess significantly greater antiulcer activity in the rat forced-exertion ulcer test. These findings support the hypothesis that methyl esterification of the prostaglandin molecule will increase some of the biological actions of PGE1 through inhibition of metabolic β-oxidation of the carboxylic side chain.  相似文献   

8.
MDL-646, 11,15-dihydroxy-16-methyl-16-methoxy-9-oxo- prost -13-en-1-oic acid methyl ester, is one of the most active members of a new class of PGE1 analogues with potent gastric cytoprotective and antisecretory activity. The potential luteolytic activities of MDL-646 and its corresponding PGE2 derivative, L 14224 were assessed from their ability to terminate pregnancy and to reduce plasma progesterone levels in the hamster. PGE1 and PGE2 were used as reference compounds. The biological and biochemical data clearly demonstrate that these 16-methyl-16-methoxy PGE derivatives, given s.c. or p.o. either once or for 3 days, have no luteolytic effects up to a daily dose of 2-2.5 mg/kg, and are therefore at most 1/2 to 1/4 as luteolytic as the parent natural PGEs. The dissociation between gastroprotective and luteolytic activity was interpreted to indicate that these new PGE derivatives have a specific action.  相似文献   

9.
Gastric juice was collected from gastric pouches in dogs stimulated with histamine. 15(R)-15-methyl PGE2, methyl ester inhibited gastric secretion in dogs when given orally, but was almost inactive when given intravenously, whereas 15(S)-15-methyl PGE2 methyl ester was active by both routes. When given directly into the small intestine (intrajejunally), the 15(S) was active and the 15(R) was inactive. The 15(R), diluted in acid and administered intrajejunally, became active in inhibiting gastric secretion. When the 15(S) was diluted in acid and administered intrajejunally, it lost half of its activity. When each analog was incubated in an acid medium, each was epimerized to give approximately a 1:1 mixture of both 15(R) and 15(S). Incubation of the 15(R) in pH 3 buffer resulted in only a trace of formation of 15(S). These results explain why the 15(R) is active orally but not intrajejunally. When given orally, the low pH of gastric secretion epimerizes much of the 15(R) into the 15(S),which is active by any route. The degree of acidity of gastric contents may determine whether the 15(R) will exert an antisecretory effect.  相似文献   

10.
U-68,215 [15-Cyclohexyl-9-deoxo-13,14-dihydro-2',9 alpha-methano-4,5,6,16,17,18,19,20-octanor-3-oxa-3,7-(1', 3'-interphenylene)-PGE1] is a stable prostacyclin analog. When given orally to rats, it is cytoprotective for the stomach (ED50: 0.8 micrograms/kg) and the intestine (ED50: 22 micrograms/kg), is gastric antisecretory (ED50: 35 micrograms/kg) and antiulcer (aspirin) (ED50: 5 micrograms/kg). The oral antisecretory ED50 in dogs is 50 micrograms/kg. It has a long duration of gastric cytoprotection: 8-10 hours compared to 3 hours for 16,16-dimethyl PGE2. Unlike most prostaglandins of the E type, it is not diarrheogenic (not enteropooling), it does not induce cellular proliferation of the gastrointestinal mucosa, when given twice a day for eight days, it is not uterotonic (in monkeys), and it does not prevent embryo implantation in hamsters. It inhibits ex vivo platelet aggregation (ED50: 300 micrograms/kg), but does not promote bleeding from cut vessels nor from gastric ulcers. U-68,215 lowers blood pressure at an oral dose corresponding to 1-5 times the antisecretory ED50 in rats and dogs, and to 150 times the cytoprotective ED50 in rats. It may be of therapeutic value in the treatment of conditions where inhibition of gastric acid secretion is desirable, e.g., gastric and duodenal ulcer, and in conditions responding to cytoprotection, e.g., stress ulcers, hemorrhagic gastritis and gastric erosions associated with nonsteroidal antiinflammatory drugs.  相似文献   

11.
The action of prostaglandins and indomethacin on gastric mucosal cyclic nucleotide concentrations was evaluated in 18 anesthetized mongrel dogs. Prostaglandins E1 (PGE1) and E2 (PGE2) (25 microgram/kg bolus, then 2 micrograms/kg/min) were administered both intravenously (4 experiments; femoral vein) and directly into the gastric mucosal circulation (10 experiments; superior mesenteric artery). The possible synergistic effect of pre-treatment and continuous arterial infusion of indomethacin (5 mg/kg bolus for 5 min, then 5 mg/min), a prostaglandin synthetase inhibitor, with PGE2 was studied in 4 experiments. Antral and fundic mucosa were biopsied and measured by radioimmunoassay for cyclic nucleotides. Doses of PGE1 and PGE2 which inhibited histamine-stimulated canine gastric acid secretion did not significantly alter antral or fundic mucosal cyclic nucleotide concentrations. Concomitant infusion of PGE2 with indomethacin did not potentiate the mucosal nucleotide response compared to PGE2 alone. These studies fail to implicate cyclic nucleotides as mediators of the inhibitory acid response response induced by PGE1 or PGE2 in intact dog stomach.  相似文献   

12.
The antisecretory and antiulcer effects of aqueous extract of Neem (Azadirachta indica) bark have been studied along with its mechanism of action, standardisation and safety evaluation. The extract can dose dependently inhibit pylorus-ligation and drug (mercaptomethylimidazole)-induced acid secretion with ED(50) value of 2.7 and 2 mg Kg(-1) b.w. respectively. It is highly potent in dose-dependently blocking gastric ulcer induced by restraint-cold stress and indomethacin with ED(50) value of 1.5 and 1.25 mg Kg(-1) b.w. respectively. When compared, bark extract is equipotent to ranitidine but more potent than omeprazole in inhibiting pylorus-ligation induced acid secretion. In a stress ulcer model, it is more effective than ranitidine but almost equipotent to omeprazole. Bark extract inhibits H(+)-K(+)-ATPase activity in vitro in a concentration dependent manner similar to omeprazole. It offers gastroprotection against stress ulcer by significantly preventing adhered mucus and endogenous glutathione depletion. It prevents oxidative damage of the gastric mucosa by significantly blocking lipid peroxidation and by scavenging the endogenous hydroxyl radical ((z.rad;)OH)-the major causative factor for ulcer. The (z.rad;)OH-mediated oxidative damage of human gastric mucosal DNA is also protected by the extract in vitro. Bark extract is more effective than melatonin, vitamin E, desferrioxamine and alpha-phenyl N-tert butylnitrone, the known antioxidants having antiulcer effect. Standardisation of the bioactive extract by high pressure liquid chromatography indicates that peak 1 of the chromatogram coincides with the major bioactive compound, a phenolic glycoside, isolated from the extract. The pharmacological effects of the bark extract are attributed to a phenolic glycoside which is apparently homogeneous by HPLC and which represents 10% of the raw bark extract. A single dose of 1g of raw extract per kg b.w. (mice) given in one day and application of 0.6g raw extract per kg b.w. per day by oral route over 15 days to a cumulative dose of 9g per kg was well tolerated and was below the LD(50). It is also well tolerated by rats with no significant adverse effect. It is concluded that Neem bark extract has therapeutic potential for the control of gastric hyperacidity and ulcer.  相似文献   

13.
M&B 28,767 [(+/-)11-deoxy-16-phenoxy-omega-tetranor PGE1] and 16, 16'-dimethyl PGE2 methylester (DMPG) were compared for their effects on gastric acid secretion (GAS) and gastric ulceration (GU), employing various laboratory models. In anaesthetised rats, GAS was stimulated by a continuous i.v. infusion of pentagastrin (30 micrograms/kg/h), and PG analogues were perfused through the stomach for 1 h. M&B 28,767 (3-15 micrograms/kg/h) and DMPG (3-60 micrograms/kg/h) reduced GAS in a dose-related manner, the ED50 values being 4 and 15 micrograms/kg/h respectively. In conscious rats possessing indwelling gastric cannulae, oral doses of M&B 28,767 (0.025-0.1 microgram/kg) and DMPG (0.50-1.0 microgram/kg) caused a prolonged inhibition of pentagastrin-stimulated GAS. M&B 28,767 was 17 times more potent than DMPG; the respective ED50 values were 0.036 and 0.6 microgram/kg. Indomethacin-induced ulceration in rats, was reduced by both M&B 28,767 and DMPG; the respective ED50 values being 3.0 and 0.8 micrograms/kg. Both compounds given orally increased gastrointestinal motility in mice; M&B 28,767 (1-3 mg/kg) and DMPG (0.1-0.3 mg/kg) caused diarrhoea, the former being about 0.1 times as potent as the latter. In another test, M&B 28,767 (0.5-5.0 mg/kg) and DMPG (10-40 micrograms/kg) overcame morphine-induced constipation in a dose-related manner, the respective ED50s being 0.9-1.4 mg/kg and 20-40 micrograms/kg. Thus, M&B 28,767 had a better profile of activity than DMPG as an antisecretory and antiulcer agent.  相似文献   

14.
Synthesis of 7-aryl/allyl-substituted androstene derivatives 3a through 3g has been carried out by Grignard reaction on 3 beta,17 beta-diacetoxyandrost-5-en-7-one (2) with aryl/allyl magnesium bromide. Isomeric mixture of products 3b and 3c/3e and 3f/3h was separated by column chromatography. Stereochemical assignment at C-7 has been made on the basis of 13C nuclear magnetic resonance studies and chemical considerations. Compounds 6a and 6b were synthesized by alkylation of compound 5 with beta-(N,N-diethylamino)ethyl chloride hydrochloride and 1-(2-chloroethyl)pyrrolidine hydrochloride, respectively. Compound 3g (isomeric mixture) prevented pregnancy in 60% of rats at 10 mg/kg daily dose administered orally on days 1 to 7 of pregnancy; however, its only isolable 7 beta-hydroxy isomer, 3h, was inactive at this dose.  相似文献   

15.
In order to improve the modest oral activity of PGE2 as an inhibitor of gastric acid secretion, analogs were prepared and tested orally in histamine-challenged rats. Insertion of a double bond at C-4, resulting in the 4,5-allene analog of PGE1, gave a small increase in activity. Introduction of the omega-tetranor-16-phenoxy lower sidechain, a modification known to enhance activity in the PGF series, gave an eight-fold increase in activity. The analog having both modifications (enprostil, 2) showed a six hundred-fold increase in oral antisecretory activity over PGE2, which may reflect a potentiation effect. Modification of enprostil at C-1 (various esters) and at C-11 (11-methyl, 11-deoxy) generally resulted in compounds of high activity while modifications at other sites generally resulted in significant reductions in activity.  相似文献   

16.
The gastric antisecretory actions of (15S)-15-methyl prostaglandin E2 methyl ester (Me-PGE2) and Prostaglandin E2 (PGE2) were evaluated in the unanesthetized gastric fistula rhesus monkey. Secretion was submaximally stimulated by multiple subcutaneous injections of histamine acid phosphate given every hour for four consecutive hours. When a steady-state plateau of gastric secretion was reached, the PG's were administered as a single bolus dose either intravenously (i.v.) or intragastrically (i.g.). Both PG's inhibited histamine-stimulated gastric secretion. The PG's showed greater sensitivity in inhibiting acid concentration while not affecting volume output. Active i.v. and i.g. antisecretory doses of Me-PGE2 ranged from 3 to 10 μg/kg, while PGE2 showed significant antisecretory activity at i.v. bolus doses of 30–100 μg/kg and i.g. bolus dose of 1.0 mg/kg. Thus, Me-PGE2 is estimated to be at least 10 and 300 times more potent than PGE2 by the i.v. and i.g. administration routes, respectively. These findings indicate that the rhesus monkey shows some similarities to man in responsiveness to gastric secretory inhibition by E-prostaglandins.  相似文献   

17.
Effects of misoprostol, a synthetic prostaglandin E1 (PGE1) analogue, on cyclooxygenase-2 (COX-2) protein level and exudate prostaglandin E2 (PGE2) and thromboxane B2 (TXB2) level were investigated in acute carrageenan-induced air pouch inflammation in rats. Treatment with misoprostol (12.5, 25, and 50 microg/kg) has been started in separated groups, 30 min and 2 days before carrageenan injection and it was given twice a day (total of five doses) by orogastric route. Indomethacin, in doses of 0.5 and 5 mg/kg, and specific COX-2 inhibitor SC-58236, in doses of 5, 10, and 20 mg/kg were given 1 h before carrageenan injection by the orogastric route. Misoprostol increased the levels of PGE2 and COX-2 protein at all doses applied. Despite indomethacin and SC-58236 increased the level of COX-2 protein when they used alone, these drugs partially inhibited misoprostol-induced increase in the level of COX-2 protein. Partial inhibition of misoprostol-induced increase in the level of COX-2 protein by indomethacin or SC-58236 may indicate the modulatory roles of endogenous prostaglandins (PGs, especially, PGE2) on the COX-2 expression.  相似文献   

18.
Based on ethnopharmacological indications that Mentha species may be used in the treatment of gastrointestinal diseases, this study aimed to characterize the gastroprotective mechanisms of menthol (ME), the major compound of the essential oil from species of the genus Mentha. The gastroprotective action of ME was analyzed in gastric ulcers that were induced by ethanol or indomethacin in Wistar male rats. The mechanisms responsible for the gastroprotective effect were assessed by analyzing the amount of mucus secreted, involvement of non-protein sulfhydryl (NP-SH) compounds, involvement of calcium ion channels and NO/cGMP/K+ATP pathway, gastric antisecretory activity and the prostaglandin E2 (PGE2) production. The anti-diarrheal activity and acute toxicity of ME were also evaluated. Oral treatment with ME (50 mg/kg) offered 88.62% and 72.62% of gastroprotection against ethanol and indomethacin, respectively. There was an increased amount of mucus and PGE2 production. The gastroprotective activity of ME involved NP-SH compounds and the stimulation of K+ATP channels, but not the activation of calcium ion channels or the production of NO. The oral administration of ME induced an antisecretory effect as it decreased the H+ concentration in gastric juice. ME displayed anti-diarrheal and antiperistaltic activity. There were no signs of toxicity in the biochemical analyses performed in the rats’ serum. These results demonstrated that ME provides gastroprotective and anti-diarrheal activities with no toxicity in rats.  相似文献   

19.
MDL-646, 11,15-dihydroxy-16-methyl-16-methoxy-9-oxo-prost-13-en-1--oic acid methyl ester, is one of the most active members of a new class of PGE1 analogues with potent gastric cytoprotective and antisecretory activity. The potential luteolytic activities of MDL-646 and its corresponding PGE2 derivative, L 14224 were assessed from their ability to terminated pregnancy and to reduce plasma progesterone levels in the hamster. PGE1 and PGE2 were used as reference compounds. The biological and biochemical data clearly demonstrate that these 16-methyl-16-methoxy PGE derivatives, given s.c. or p.o. either once or for 3 days, have no luteolytic effects up to a daily dose of 2–2.5 mg/kg, and are therefore at most to as luteolytic as the parent natural PGEs. The dissociation between gastroprotective and luteolytic activity was interpreted to indicate that these new PGE derivatives have a specific action.  相似文献   

20.
The novel guanidines N-(3,4-dimethoxy-2-chlorobenzylideneamino)-guanidine (ME 10092) and N-(3,4-dimethoxy-2-chlorobenzylideneamino)-N1-hydroxyguanidine (PR5) were recently reported to exhibit promising cardioprotective activities in myocardial ischaemia and reperfusion in rats. The current study investigated for the first time pharmacological effects of ME10092 in the primate, viz. the Cape baboon Papio ursinus. The effects of ME10092 (1 and 2 mg/kg doses) on the cerebral blood flow, heart rates and the systolic and diastolic blood pressure were investigated after intravenous injection to the baboon under anaesthesia. The cerebral perfusion effects of ME10092 were assessed using Single Photon Emission Computed Tomography according to the split-dose approach and 99mTc-hexamethyl-propylene amine oxime as brain perfusion tracer. The observation that the recovery times from the anaesthesia were unacceptably prolonged excluded doses beyond 2 mg/kg. The data indicate that no cerebral perfusion changes were induced at both the 1 and 2 mg/kg doses of ME10092. Both these doses of ME10092 showed blood pressure and heart rate effects, with the latter being more significant. Decreases in heart rate were seen directly after ME10092 administration reaching levels of about 20% for the 2 mg/kg dose and about 15% for the 1 mg/kg dose at around 6 min post drug administration. A transient decrease in both systolic and diastolic blood pressure was observed for the higher dose. The blood pressure data further suggest an attenuation of the anaesthesia induced increase in pressure usually present in non-intervention studies. ME10092 clearly exhibits mycocardial effects in the non-human primate, similar to the effects previously observed in the ischaemia-reperfusion rat model, where ME10092 showed strong protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号