首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variability in the chirp rate of the male song of the ephippigerine speciesEphippigerida taeniata during intraspecific communication was investigated in the laboratory. Conspecific chirps were used as auditory stimuli. The stimulus rate was controlled by computer. Experiments were carried out at 19, 27, and 35°C. Acoustically isolated males ofE. taeniata sang with a relatively constant chirp rate, which depended on the ambient temperature. Chirp rate significantly increased with rising temperature from 19 to 27°C, whereas at 35°C the chirp rate did not differ significantly from that at 27°C. Male chirp rates were affected by stimulus rates. Males significantly increased their chirp rate in response to increasing stimulus rates at temperatures of 19 and 27°C. At 35°C the increase in the chirp rate was not significant. At 27 and 35°C males sang with a higher chirp rate than the stimulus rate within a certain range. Evaluating stimulus and response chirp pattern when the males increased their chirp rate in response to the stimulus rate showed that an alternation pattern was established. More than 50% of the male chirps occurred at a characteristic time range at around 40% of the interstimulus interval, which was slightly affected by temperature.  相似文献   

2.
Skin temperature is a common physiological parameter that reflects human thermal responses. The purpose of this research was to investigate the effects of radiant temperature on human skin temperature and surface temperature in stable and unstable thermal environments. For a clothed human body, the skin temperature is the surface temperature of the skin, while the surface temperature is the outer surface temperature of the clothes. For this aim, the radiant temperature from 26 to 38 °C and then from 38 to 26 °C was controlled in three different ways; in stable condition keeping stable above 40 min, in unstable condition at a rate of 2 °C/5 min, and in another unstable condition at a rate of 2 °C/10 min. Experimental data showed that at the same radiant temperature, the local skin/surface temperatures during the radiant temperature decrease were higher compared to those during the radiant temperature increase. During the radiant temperature increase/decrease, the increments/decrements of the mean skin temperature and the mean surface temperature decreased gradually from the stable condition, 2 °C/10 min to 2 °C/5 min. Compared to surface temperature, the faster the radiant temperature changed, the more obviously the change in skin temperature was delayed. These data demonstrated that the human body has physiological adaptability to unstable thermal environments.  相似文献   

3.
The use of R-R interval and the coefficient of variation in R-R intervals (CVR-R) for the evaluation of thermal comfort was investigated. The experiments were carried out with ten male subjects but data from one were excluded from the analysis. Thermal sensation, comfort, and tolerance of environmental conditions were reported and mean skin temperature, R-R interval and CVR-R were monitored during a 3 h period in a climatic chamber with the operative temperature set at 26, 20, or 30° C. Relative humidity was maintained at ca. 50% in each case. At the operative temperature of 20° C, the mean skin temperature was significantly lower, the cold sensation was significantly more intense, and discomfort was significantly greater than at 26° C and R-R interval was increased significantly. Seven of the nine subjects were unable to tolerate this thermal environment. The R-R interval and CVR-R were increased in five and four of those seven subjects, respectively. At the operative temperature of 30° C, the mean skin temperature was significantly higher, and the sensation of warmth was significantly more intense than at 26° C. Seven of the nine subjects felt discomfort, and four of the seven reported an inability to tolerate this thermal environment. The R-R interval and CVR-R were decreased in four and three of these four subjects, respectively. At the operative temperature of 20° C CVR-R was significantly greater than that at 30° C. Together with the subjective indices, R-R interval and CVR-R are considered worthy of further evaluation as objective indications of the effect on people of the thermal environment.  相似文献   

4.
The effects of temperature changes on oxygen consumption of Chinese shrimp (Fenneropenaeus chinensis Osbeck) were studied. The response of oxygen consumption to a temperature rise was conformed to partial metabolic compensation. No compensatory response was observed at lower temperature. A sudden temperature increase by 12 °C resulted an overshoot in oxygen consumption in shrimp adapted to 19 °C, while a sudden decrease by 12 °C in shrimp adapted to 19 °C resulted in an undershoot in oxygen consumption. The shrimp adapted to 31 °C responded with an undershoot in oxygen consumption when a sudden temperature drop by 12 °C occurred. But overshoot in oxygen consumption did not occur when the shrimps were transferred back from 19 to 31 °C. The amplitude of oxygen consumption was reduced in shrimp during the process of acclimation to the temperature diel fluctuation. After the shrimp had adapted to the temperature fluctuation, the daily mean oxygen consumption of shrimp at diel temperature fluctuation from 24 to 30 °C was significantly lower than those adapted to the constant temperature at 27 °C (P<0.05). The decrease in metabolic rate may account for the increase in the growth rate of shrimp at a diel fluctuating thermal regime.  相似文献   

5.
The purpose of this study was to examine the effects of mild heat exposure on sleep stages and body temperature in older men. Ten healthy male volunteers with a mean age of 69.2 ± 1.35 years served as subjects. The experiments were carried out under two different sets of conditions: 26 °C 50% relative humidity (RH) and 32 °C 50% RH. The subjects slept from 2200 hours to 0600 hours with a cotton blanket and wearing short-sleeve pajamas and shorts on a bed covered by a sheet. Electroencephalogram, electro-occulogram and mental electromyogram recordings were made through the night. Rectal and skin temperatures were measured continuously. No significant differences were observed in sleep onset latency. In time spent in each sleep stage, wakefulness was significantly increased at 32 °C than at 26 °C. The total amount of wakefulness increased and rapid eye movement sleep (REM) decreased at 32 °C compared to 26 °C. The fall in rectal temperature was significantly suppressed and the mean skin temperature was significantly higher at 32 °C than at 26 °C. These results suggest that, for older men, even mild heat exposure during the nighttime sleep period may increase thermal load, suppress the decrease of rectal temperature, decrease REM, and increase wakefulness and whole-body sweat loss.  相似文献   

6.
The thermal fields and biopotentials of the brain were studied in 11 healthy subjects in the states of quiet wakefulness and sleep (stages I–IV). To this end, a new method of dynamic radiomapping was applied in parallel with the traditional method of EEG recording. The method of dynamic radiomapping is based on measuring the brain thermal radiation in the decimeter (40 cm) wave range. It allows the integral brain temperature to be recorded from deep inside and up to 2.5 cm from the surface with the help of 12 antennas applied to the skin. The temperature of the cerebral cortex of the human subject in the state of quiet wakefulness varied stochastically in the range of deviations of ±0.3°C in all areas. Changes in the brain functional state, i.e., the transition from wakefulness to sleep, were accompanied by either an increase in the variation range to ±0.5°C or the appearance of stationary foci of heating (by 0.9–1.3°C) or cooling (by –0.7°C) of individual locations and amplitudes.  相似文献   

7.
Seawater temperature is an important environmental factor for the early life stages of marine invertebrates. In this study we evaluated and described the effects of temperature during early development of E. chloroticus, identifying the optimum temperature range and upper thermal limit for successful development. The temperature range evaluated was between 15–24 °C which included the normal seawater temperatures during the spawning season in northern New Zealand, as well as the highest temperature projected by the IPCC for this region due to global warming (1–3 °C by the year 2100). Gametes from several females and males were used in the experiment. Fertilization was carried out at different temperatures and development was monitored at different time points after fertilization in each temperature. The development rate of E. chloroticus increased with an increase in seawater temperature. However, at temperatures higher than 21.5 °C the amount of abnormal development reached ∼30%. The optimum temperature for early development was between 15–21 °C, whereas the upper thermal limit was ∼24 °C. Therefore, early development of E. chloroticus is negatively affected by an increase in seawater temperature of ∼3–4 °C above current seawater temperature levels in northern New Zealand. The thermal sensitivity of early life stages of E. chloroticus could affect survival rates during early development of this species in a global warming scenario, which could impair recruitment in populations which are exposed to higher temperatures, leading to possible distributional shifts of this species.  相似文献   

8.
The effect of an acute temperature increase on the control of the heart of the Antarctic teleost Pagothenia borchgrevinki was examined. Heart rate was thermally independent over the range −1.2°C to 3°C, although increasing the temperature from −1.2°C to 3°C elicited a decrease in ventral aortic pressure. Administration of the muscarinic receptor antagonist atropine and the β-adrenoreceptor antagonist sotalol abolished the thermal independence of heart rate, with heart rate increasing at Q10=2. As temperature was increased from −1.2°C to 3°C, cholinergic tone on the heart also increased, from 44.6±4.2% to 70.0±8.4%. At the same time the adrenergic tone increased from 35.5±3.3% to 43.0±3.1%, but the effect on the heart was masked by the increase of cholinergic tone, leading to the thermal independence of heart rate.  相似文献   

9.
Measurements of the thoracic temperature and recordings of the spike activity of the most sensitive auditory receptor (A1 cell) were made in Empyreuma pugione (Arctiidae, Ctenuchinae). The temperature range tested (19–36 °C) is relevant for the behavior and ecology of this species. Experiments were performed during the hours of maximal flying activity in the wild: sunrise and sunset. The thoracic temperature during rest reflects that of the surrounding air; there is an increase of 3–4 °C immediately after ceasing free flying in the laboratory. The spike activity of the tympanic organ was recorded with a stainless-steelhook electrode placed beneath the tympanic nerve in the mesothorax. The A1 cell activity was studied without acoustic stimulation (spontaneous) and in response to 35-kHz acoustic pulses of 20, 40, or 100 ms duration. At all of these durations A1 cell response to saturating stimulus was analysed, while with 40-ms pulses different stimulus intensities were used (20–90 dB SPL in 10-dB steps). The number of action potentials per pulse, mean spike rate, maximal instantaneous discharge, and latency period depend strongly on air temperature, while the variation coefficients of the interspike intervals during the responses were not temperature dependent and vary non-monotonically with stimulus intensity. During responses to a saturating stimulus, the stimulus duration does not affect the activation energy, calculated from an Arrhenius plot, of different physiological features. Adaptation, studied in the responses to 100-ms pulses, is also temperature dependent. This phenomenon has two components, each of which shows different activation energies, suggesting a different membrane origin. High stimulus intensity (90 dB SPL) significantly affects the activation energy of the action potentials and mean spike rate, while the activation energy, of the maximal instantaneous discharge and latency period do not show this strong dependency. The spontaneous A1 cell spike rate varies with temperature, as does the value of the mode of the relative frequency distribution of the interspike interval. The activation energy of the spike rates measured at A1 cell responses to saturating stimuli is in good agreement with that described in amphibian innerear hair cells. It is suggested that this moth auditory receptor cell also has mechanosensitive protein channels.Abbreviations AP/p action potentials per pulse - AP/s action potentials per second - CI confidence interval - E a activation energy - ISI interspike interval - SD standard deviation - VC variation coefficient  相似文献   

10.
Root-zone temperature effects on the early development of maize   总被引:1,自引:0,他引:1  
Summary Maize plants were grown in sand culture under greenhouse conditions from emergence to the 4-leaf stage at root-zone temperature of 12.5°, 15° and 17.5°C in one experiment, and grown to the 6-leaf stage at root zone temperatures of 15°, 20°, and 25°C in a second experiment. Attention was given to plant part differentiation as determined by leaf appearance, and to growth as determined by dry tissue accumulation, at specified growth stages.For anyone growth-stage interval the number of days required for that interval increased with decreasing root-zone temperature. Dry weights of both roots and shoots at the various growth stages decreased with increasing root-zone temperature. Root zone temperature had a direct influence on the meristematic region of the shoots of young maize plants because of the close proximity of this region to the ground surface and thereby regulated plant development during the period of leaf initiation.Increased root-zone temperature enhanced plant development rate relative to plant growth rate thus reducing the ultimate yield of maize at the 4- and 6- leaf stages.It was concluded that because of the direct influence of root-zone temperature on the shoot meristem and hence on the nutrient demands of the shoot, due consideration should be given to this factor in studies concerned with soil temperature.Agronomy Department Paper No. 709.  相似文献   

11.
To assess the pattern of temperature influencing the effect of allelochemicals on growth of insect herbivores and to examine the potential effect of warmer nights due to global warming, we examined the simultaneous effects of allelochemicals and warmer night-time temperatures on an insect herbivore (Spodoptera exigua; Lepidoptera: Noctuidae). Dietary chlorogenic acid, rutin and tomatine levels reflected those occurring naturally in the leaves of tomato, a hostplant of this herbivore. We compared the effects of four thermal regimes having a daytime temperature of 26 °C , with the night-time temperature increased from 14 to 26 °C by increments of 4 °C . The effect of a particular allelochemical on developmental rate was similar among the four thermal regimes. Chlorogenic acid and tomatine each reduced final larval weight, but there was no effect of night-time temperature. In contrast, rutin had no effect on final weight, whereas final weight declined with increasing night-time temperature. Night-time temperature did not influence amount eaten. Larvae ate less when chlorogenic acid or tomatine was in the diet. For each allelochemical, there were no allelochemical by thermal regime interactions. In addition, we compared the effects of allelochemicals and the thermal regime of 26:14 °C and constant 20 °C , which was the average temperature of the 26:14 °C regime. Developmental rate was lower at the constant 20 °C regime, chlorogenic acid and tomatine each depressed developmental rate, and there were no allelochemical by thermal regime interactions. Thus, regardless of the specific allelochemical or amount, the pattern of response at the fluctuating regime was similar to that at the constant temperature. In contrast, comparison of the thermal regime of 26:22 °C and constant 24 °C , which was the average temperature of the 26:22 °C regime, showed several allelochemical by thermal regime interactions. At the 26:22 °C regime, developmental rate was disproportionatly higher at the maximal rutin concentration compared to that at constant 24 °C . At the constant 24 °C , final larval mass was disproportionately lower at the moderate tomatine concentration compared to that at the 26:22 °C regime. Because these results differ from that of other studies examining another species, it appears that the response to incremental changes in night-time temperature will reflect the allelochemicals and insect species tested. The contrast between the constant 24 °C and 26:22 °C regimes indicates that even small fluctuations (±2 °C ) in temperature over 24 h can yield differences in the response to an allelochemical.  相似文献   

12.
The bacterium Escherichia coli exhibits chemotactic behavior at temperatures ranging from approximately 20 °C to at least 42 °C. This behavior is controlled by clusters of transmembrane chemoreceptors made from trimers of dimers that are linked together by cross-binding to cytoplasmic components. By detecting fluorescence energy transfer between various components of this system, we studied the underlying molecular behavior of these receptors in vivo and throughout their operating temperature range. We reveal a sharp modulation in the conformation of unclustered and clustered receptor trimers and, consequently, in kinase activity output. These modulations occurred at a characteristic temperature that depended on clustering and were lower for receptors at lower adaptational states. However, in the presence of dynamic adaptation, the response of kinase activity to a stimulus was sustained up to 45 °C, but sensitivity notably decreased. Thus, this molecular system exhibits a clear thermal sensitivity that emerges at the level of receptor trimers, but both receptor clustering and adaptation support the overall robust operation of the system at elevated temperatures.  相似文献   

13.
Summary In conscious Pekin ducks, carotid and sciatic blood flows, respiratory rate, core and skin temperatures were measured during selective thermal stimulations of the spinal cord and rostral brain stem in thermoneutral (20 °C) and warm (32 °C) ambient conditions.At thermoneutral ambient temperature selective heating of the spinal cord by 2–3 °C (to 43–44 °C) increased the carotid blood flow by 138% and the sciatic blood flow by 46%. Increase in blood flows was correlated with increased breathing rate and beak and web skin temperatures.Selective cooling of the spinal cord at warm ambient temperatures and panting reduced the blood flow in both arteries and decreased the breathing rate.Heating or cooling of the brain stem showed generally very weak but otherwise similar responses as thermal stimulation of the spinal cord. In one duck out of six there was a marked effect on regional blood flow during brain stimulation.The results show that thermal stimulation of the spinal cord exerts a marked influence on regional blood flow important in thermoregulation, whereas the lower brain stem shows only a weak thermosensitivity, and stimulation caused only small cardiovascular changes of no major consequence in thermoregulation.  相似文献   

14.
The Antarctic notothenioids are among the most stenothermal of fishes, well adapted to their stable, cold and icy environment. The current study set out to investigate the thermal sensitivity/insensitivity of heart rate and ventral aortic blood pressure of the Antarctic nototheniid fish Pagothenia borchgrevinki over a range of temperatures. The heart rate increased rapidly from –1 to 6°C (Q10=2.0–3.3), but was relatively insensitive to temperature above the ~6°C lethal limit of the species (Q10=1.2). The increase in heart rate from –1 to 6°C was the result of a 45% increase in excitatory adrenergic tone, masking a 37% increase in inhibitory cholinergic tone. Ventral aortic pressure was regulated well above the lethal limit, up to at least 10°C. With the return of the fish to environmental temperatures, the heart rate rapidly decreased back to control levels, while ventral aortic pressure increased and remained elevated for over an hour following a 6°C exposure.  相似文献   

15.
A device is described for measuring linear extension of grass leaves during controlled cooling and heating of the growing region. The instrument was employed to investigate the sensitivity to temperature of the expanding third and fourth leaves of Lolium temulentum L. seedlings. Using a stepped temperature profile it was established that there was no lag in the response of growth rate to rapid changes in temperature below 16°C. If cooling was continued to the point where growth ceased (1°C) but no further, then rates of growth on rewarming were enhanced over the chilling range and reverted to the original rate at 20°C. Cooling to successively lower subzero temperatures before rewarming abolished the hysteretic enhancement, progressively raised the temperature at which growth resumed and decreased the rate of extension until, at-5.3°C, no recovery occurred. The temperature sensitivity of growth, measured as Q10, was essentially constant when cooling from 20°C to 5°C, with 5°C-grown leaf tissue exhibiting a higher mean Q10 than tissue developed at 20°C. The possible physiological significance of these data is discussed.Abbreviations LVDT linear variable displacement transformer - Pe, Fx temperatures at which growth ceases during cooling and resumes during rewarming  相似文献   

16.
Average root length, root/shoot ratio and auxin content in roots were higher in plants supplied with nitrate rather than ammonium and grown at 18, 21, 24°C. The effects on root length were most pronounced at the highest temperatures (21 and 24°C); and the warmer the temperature, the earlier appearance of the differences in growth rate between NO3- and NH4-fed plants. A sharp acceleration of root growth was characteristic of NO3-fed plants grown at 21 and 24°C and was associated with a temporary increase in auxin concentration measured by immunoassay.  相似文献   

17.
Differential scanning calorimetry (DSC) was used to study the effect of troponin (Tn) and its isolated components on the thermal unfolding of skeletal muscle tropomyosin (Tm) bound to F-actin. It is shown that in the absence of actin the thermal unfolding of Tm is expressed in two well-distinguished thermal transitions with maxima at 42.8 and 53.8°C. Interaction with F-actin affects the character of thermal unfolding of Tm leading to appearance of a new Tm transition with maximum at about 48°C, but it has no influence on the thermal denaturation of F-actin stabilized by aluminum fluoride, which occurs within the temperature region above 70°C. Addition of troponin leads to significant increase in the cooperativity and enthalpy of the thermal transition of the actin-bound Tm. The most pronounced effect of Tn was observed in the absence of calcium. To elucidate how troponin complex affects the properties of Tm, we studied the influence of its isolated components, troponin I (TnI) and troponin T (TnT), on the thermal unfolding of actin-bound Tm. Isolated TnT and TnI do not demonstrate cooperative thermal transitions on heating up to 100°C. However, addition of TnI, and especially of TnT, to the F-actin–Tm complex significantly increased the cooperativity of the thermal unfolding of actin-bound tropomyosin.  相似文献   

18.
Theeffects of spermine on abscisic acid (ABA), hardening, and browning in storedmangosteen fruit were investigated. The hardening and browning, which areassociated with chilling injury (CI), were observed in only the skin of fruitstored at 7 °C. However, the hardening of skin was notaccompanied by moisture loss. The spermine treatment decreased the browning andhardening of the skin and extended storage time. Carbon dioxide(CO2)production from stored fruit gradually increased with d in storage(DIS). The increase of CO2 may be associated with the moisture lossbecause these levels coincided. ABA concentrations in the skin were highest infruit stored at 7 °C, followed by spermine treatment at 7°C, and the lowest at 13 °C. That is, thespermine treatment inhibited the increase of ABA in the skin of stored fruit.ABA concentrations in the skin may be associated with the degree of CI becausetheir fluctuations coincided. ABA metabolism in fruit stored at 7°C or 13 °C was also examined. The PA-DPApathway may not be the primary pathway of ABA metabolism because theconcentrations of PA and DPA were very low compared with those of ABA. ABAconcentrations in the aril were not significantly different between 7°C and 13 °C. This may be related to the lackof CI observed in the aril. ABA metabolism was different at each temperature.The decrease of ABA and the increase of DPA correlated at 13°C, however this correlation was not observed at 7°C. ABA metabolism may be influenced by temperature.  相似文献   

19.
The effects of thermal stress were identified in terms of a calf's systemic response. The following physiological parameters were monitored during successive exposure of eight Holstein calves to five temperature levels ranging from 15.5°C to 37.7°C at 60% RH: stroke volume, heart rate, arterial systolic and diastolic pressures, plasma cortisol and thyroxine levels, and internal and skin temperatures. Results indicated that 3 to 4- week-old male calves respond to acute heat stress only above 32.2°C at 60% RH and do not demonstrate a marked attempt to acclimate until at least four to five hours of exposure at 37.7°C.  相似文献   

20.
The purpose of the study was to investigate the degree of subject variability in the peripheral and core temperature thresholds of the onset of shivering and sweating. Nine healthy young male subjects participated in three trials. In the first two trials, wearing only shorts, they were exposed to air temperatures of 5 degrees C and 40 degrees C until the onset of shivering and sweating, respectively. In the second experiment, subjects wore a water perfused suit that was perfused with 25 degrees C water at a rate of 600 cc/min. They exercised on an ergometer at 50% of their maximum work rate for 10-15 min. At the onset of sweating, the exercise was terminated, and they remained seated until the onset of shivering, as reflected in oxygen uptake. In the first two trials, rectal temperature (Tre) was stable, despite displacements in skin temperature (Tsk), whereas in the third trial, Tsk (measured at four sites) was almost constant (30-32 degrees C), and the thermoregulatory responses were initiated due to changes in Tre alone. The results of the first two trials established the peripheral interthreshold zone, whereas the results of the third trial established the core interthreshold zone. The results demonstrated individual variability in the peripheral and core interthreshold zones, a proportional correlation between both zones (r=0.87), and a relatively higher contribution of adiposity in both zones as compared with those of other non-thermal factors such as height, weight, body surface area, surface area-to mass ratio, and the maximum work load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号