首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 243 毫秒
1.
Glutathione S-transferases are a family of multifunctional enzymes involved in the metabolism of drugs and xenobiotics. Two tyrosine residues, Tyr 7 and Tyr 111, in the active site of the enzyme play an important role in the binding and catalysis of substrate ligands. The crystal structures of Schistosoma japonicum glutathione S-transferase tyrosine 7 to phenylalanine mutant [SjGST(Y7F)] in complex with the substrate glutathione (GSH) and the competitive inhibitor S-octylglutathione (S-octyl-GSH) have been obtained. These new structural data combined with fluorescence spectroscopy and thermodynamic data, obtained by means of isothermal titration calorimetry, allow for detailed characterization of the ligand-binding process. The binding of S-octyl-GSH to SjGST(Y7F) is enthalpically and entropically driven at temperatures below 30 degrees C. The stoichiometry of the binding is one molecule of S-octyl-GSH per mutant dimer, whereas shorter alkyl derivatives bind with a stoichiometry of two molecules per mutant dimer. The SjGST(Y7F).GSH structure showed no major structural differences compared to the wild-type enzyme. In contrast, the structure of SjGST(Y7F).S-octyl-GSH showed asymmetric binding of S-octyl-GSH. This lack of symmetry is reflected in the lower symmetry space group of the SjGST(Y7F).S-octyl-GSH crystals (P6(3)) compared to that of the SjGST(Y7F).GSH crystals (P6(3)22). Moreover, the binding of S-octyl-GSH to the A subunit is accompanied by conformational changes that may be responsible for the lack of binding to the B subunit.  相似文献   

2.
The binding properties of two electroactive glutathione-ferrocene conjugates that consist in glutathione attached to one or both of the cyclopentadienyl rings of ferrocene (GSFc and GSFcSG), to Schistosoma japonica glutathione S-transferase (SjGST) were studied by spectroscopy fluorescence, isothermal titration calorimetry (ITC) and differential pulse voltammetry (DPV). Such ferrocene conjugates resulted to be competitive inhibitors of glutathione S-transferase with an increased binding affinity relative to the natural substrate glutathione (GSH). We found that the conjugate having two glutathione units (GSFcSG) exhibits an affinity for SjGST approximately two orders of magnitude higher than GSH. Furthermore, it shows negative cooperativity with the affinity for the second binding site two orders of magnitude lower than that for the first one. We propose that the reason for such negative cooperativity is steric since, i) the obtained thermodynamic parameters do not indicate profound conformational changes upon GSFcSG binding and ii) docking studies have shown that, when bound, part of the first bound ligand invades the second site due to its large size. In addition, voltammetric measurements show a strong decrease of the peak current upon binding of ferrocene-glutathione conjugates to SjGST and provide very similar K values than those obtained by ITC. Moreover, the sensing ability, expressed by the sensitivity parameter shows that GSFcSG is much more sensitive than GSFc, for the detection of SjGST.  相似文献   

3.
We implemented both structure-based drug design and the concept of polyvalency to discover a series of potent and unsymmetrical Schistosoma japonicum glutathione S-transferase (SjGST) inhibitors 10-12. This strategy achieved not only an excellent enhancement (10- to 490-fold) in the inhibitory potency, compared to the monofunctional analogues 1-5, but was also an effective modification by selecting a hydrophobic moiety with a flexible linker. The designed compounds with a low micromolar hit demonstrate special values in refining the new generation of SjGST inhibitors. The stoichiometry of the binding is one inhibitor molecule per SjGST monomer via isothermal titration calorimetric measurement.  相似文献   

4.
A primary pathway for metabolism of electrophilic compounds in Schistosoma japonicum involves glutathione S-transferase (SjGST)-catalyzed formation of glutathione (GSH) conjugates. As part of a program aimed at gaining a better understanding of the defense system of parasites, a series of aromatic halides (1-8), aliphatic halides (9, 10), epoxides (11-20), alpha,beta-unsaturated esters (21, 22), and alpha,beta-unsaturated amides (23, 24) were prepared, and their participation in glutathione conjugate formation was evaluated. Products from enzymatic and nonenzymatic reactions of these substances with glutathione were characterized and quantified by using reverse-phase high-performance liquid chromatography (HPLC), NMR, and fast atom bombardment mass spectrometry (FAB-MS) analysis. Mechanisms for formation of specific mono(glutathionyl) or bis(glutathionyl) conjugates are proposed. Although the results of this effort indicate that SjGST does not catalyze addition or substitution reactions of 1, 3, 4, 7-9, 11-13, 15-17, 19-21, and 24, they demonstrate that 2, 5, 6, 14, 18, and 23 undergo efficient enzyme-catalyzed conjugation reactions. The kcat values for SjGST with 23 and 18 are about 886-fold and 14-fold, respectively, larger than that for 5. This observation suggests that 23 is a good substrate in comparison to other electrophiles. Furthermore, the initially formed conjugation product, 23a, is also a substrate for SjGST in a process that forms the bis(glutathionyl) conjugate 23b. Products arising by enzymatic and nonenzymatic pathways are generated under the conditions of SjGST-activated GSH conjugation. Interestingly, production of nonenzymatic GSH conjugates with electrophilic substrates often overwhelms the activity of the enzyme. The nonenzymatic GSH conjugates, 9a-11a, 16a, 21a, and 22a, are inhibitors of SjGST with respective IC50 values of 1.95, 75.5, 0.96, 19.0, 152, and 0.36 microM, and they display moderate inhibitory activities against human GSTA2. Direct evidence has been gained for substrate inhibition by 10 toward SjGST and GSTA2 that is more potent than that of its GSH conjugate 10a. The significance of this work is found in the development of a convenient NMR-based technique that can be used to characterize glutathione conjugates derived from small molecule libraries as part of efforts aimed at uncovering specific potent SjGST and GSTA2 inhibitors. This method has potential in applications to the identification of novel inhibitors of other GST targets that are of chemotherapeutic interest.  相似文献   

5.
The binding of three competitive glutathione analogue inhibitors (S-alkylglutathione derivatives) to glutathione S-transferase from Schistosoma japonicum, SjGST, has been investigated by isothermal titration microcalorimetry at pH 6.5 over a temperature range of 15--30 degrees C. Calorimetric measurements in various buffer systems with different ionization heats suggest that no protons are exchanged during the binding of S-alkylglutathione derivatives. Thus, at pH 6.5, the protons released during the binding of substrate may be from its thiol group. Calorimetric analyses show that S-methyl-, S-butyl-, and S-octylglutathione bind to two equal and independent sites in the dimer of SjGST. The affinity of these inhibitors to SjGST is greater as the number of methylene groups in the hydrocarbon side chain increases. In all cases studied, Delta G(0) remains invariant as a function of temperature, while Delta H(b) and Delta S(0) both decrease as the temperature increases. The binding of three S-alkylglutathione derivatives to the enzyme is enthalpically favourable at all temperatures studied. The temperature dependence of the enthalpy change yields negative heat capacity changes, which become less negative as the length of the side chain increases.  相似文献   

6.
Superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione S-transferase (GST) and glutathione reductase (GR) play crucial roles in balancing the production and decomposition of reactive oxygen species (ROS) in living organisms. These enzymes act cooperatively and synergistically to scavenge ROS, as not one of them can singlehandedly clear all forms of ROS. In order to imitate the synergy of the enzymes, we designed and generated a recombinant protein, which comprises of a Schistosoma japonicum GST (SjGST) and a bifunctional 35-mer peptide with SOD and GPX activities. The engineered protein demonstrated SOD, GPX and GST activities simultaneously. This trifunctional enzyme with SOD, GPX and GST activities is expected to be the best ROS scavenger.  相似文献   

7.
Superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione S-transferase (GST) and glutathione reductase (GR) play crucial roles in balancing the production and decomposition of reactive oxygen species (ROS) in living organisms. These enzymes act cooperatively and synergistically to scavenge ROS, as not one of them can singlehandedly clear all forms of ROS. In order to imitate the synergy of the enzymes, we designed and generated a recombinant protein, which comprises of a Schistosoma japonicum GST (SjGST) and a bifunctional 35-mer peptide with SOD and GPX activities. The engineered protein demonstrated SOD, GPX and GST activities simultaneously. This trifunctional enzyme with SOD, GPX and GST activities is expected to be the best ROS scavenger.  相似文献   

8.
The binding properties of a glutathione S-transferase (EC 2.5.1.18) from Schistosoma japonicum to substrate glutathione (GSH) has been investigated by intrinsic fluorescence and isothermal titration calorimetry (ITC) at pH 6.5 over a temperature range of 15-30 degrees C. Calorimetric measurements in various buffer systems with different ionization heats suggest that protons are released during the binding of GSH at pH 6.5. We have also studied the effect of pH on the thermodynamics of GSH-GST interaction. The behaviour shown at different pHs indicates that at least three groups must participate in the exchange of protons. Fluorimetric and calorimetric measurements indicate that GSH binds to two sites in the dimer of 26-kDa glutathione S-transferase from Schistosoma japonicum (SjGST). On the other hand, noncooperativity for substrate binding to SjGST was detected over a temperature range of 15-30 degrees C. Among thermodynamic parameters, whereas DeltaG degrees remains practically invariant as a function of temperature, DeltaH and DeltaS degrees both decrease with an increase in temperature. While the binding is enthalpically favorable at all temperatures studied, at temperatures below 25 degrees C, DeltaG degrees is also favoured by entropic contributions. As the temperature increases, the entropic contributions progressively decrease, attaining a value of zero at 24.3 degrees C, and then becoming unfavorable. During this transition, the enthalpic contributions become progressively favorable, resulting in an enthalpy-entropy compensation. The temperature dependence of the enthalpy change yields the heat capacity change (DeltaCp degrees ) of -0.238 +/- 0.04 kcal per K per mol of GSH bound.  相似文献   

9.
The binding of glutathione (GSH) to the tyrosine 7 to phenylalanine mutant of Schistosoma japonicum glutathione S-transferase (SjGST-Y7F) has been studied by isothermal titration calorimetry (ITC). At pH 6.5 and 25 °C this mutant shows a higher affinity for glutathione than wild type enzyme despite an almost complete loss of activity in the presence of 1-chloro-2,4-dinitrobenzene (CDNB) as second substrate. The enthalpy change upon binding of GSH is more negative for the mutant than for the wild type GST (SjGST). Changes in accessible solvent areas (ASA) have been calculated based on enthalpy and heat capacity changes. ASA values indicated the burial of apolar surfaces of protein and ligand upon binding. A more negative ΔCp value has been obtained for the mutant enzyme, suggesting a more hydrophobic interaction, as may be expected from the change of a tyrosine residue to phenylalanine.  相似文献   

10.
Schistosoma japonicum glutathione-S-transferase (SjGST) was genetically engineered with a poly-histidine tag at the C-terminus and highly expressed in Escherichia coli. Both SjGST and the tagged protein, SjGST/His, were purified with glutathione Sepharose 4B gels and subsequently studied for their activities, antibody-binding abilities, and metal affinities. The production level of active SjGST/His was higher than that of SjGST. Both proteins had similar specific catalytic activities and binding abilities with anti-SjGST antibody, while the antibody against poly-histidine recognized only SjGST/His. Proteolytic degradation was occasionally observed in aged dialyzed SjGST/His preparation. Under a native condition, the Co(2+)-chelated TANOL gel (Co-TANOL) had a better binding specificity to the tagged protein than did the Ni(2+)-chelated nitriloacetic acid (Ni-NTA) agarose gel. However, the binding capacity of the Ni-NTA gel for SjGST/His was 2-fold higher than that of the Co-TANOL one. To increase the native binding specificity of the Ni-NTA gel, 20 mM imidazole had to be added to the washing solution. In a denatured state, both gels could only capture SjGST/His, and the binding capacity of the Ni-NTA gel was nearly 2-fold higher than that of the Co-TANOL gel. The binding association constants of both gels with SjGST/His did not differ greatly under either condition. The study demonstrated that the C-terminal addition of the poly-histidine tag to SjGST increased the metal affinity of the enzyme to the Co-TANOL gel under both native and denaturing conditions and to the Ni-NTA gel under denaturing conditions, whereas the enzymatic activity and antibody-binding ability were not affected.  相似文献   

11.
为表达、获取日本血吸早谷胱甘肽转移酶(SjGST)基因工程重组蛋白,以日本血吸虫(中国大陆株)cDNA为模板,设计、合成特定寡核苷酸引物,RT-PCR法扩增GST编码基因序列,将扩增产物连接pGEM-T克隆载体,再亚克隆到真、原核表达质粒pBK-CMV中,转染大肠杆菌XL1-blue,经IPTG诱导后用SDS-PAGE分析表达效果。结果 RT-PCR法特异性扩增出日本血吸虫GST编码区基因片段,其  相似文献   

12.
A common affinity tag used to express and purify fusion proteins is glutathione S-transferase. However, many researchers have reported difficulty eluting GST-tagged proteins from the affinity matrix. This report demonstrates that the problem likely is due to the propensity of glutathione S-transferase to dimerize combined with a propensity of the tagged protein to oligomerize, which results in formation of large oligomers of fusion protein that are chelated by the affinity matrix. The solution to the problem is to use S-butylglutathione instead of glutathione to elute, as S-butylglutathione binds more tightly to glutathione S-transferase and overcomes the chelate effect. Moreover, in contrast to glutathione, S-butylglutathione has no reducing capability that might inactivate a tagged protein.  相似文献   

13.
Schistosomiasis is listed as one of most important tropical diseases and more than 200 million people are estimated to be infected. Development of a vaccine is thought to be the most effective way to control this disease. Recombinant 26-kDa glutathione S-transferase (rSjGST) has previously been reported to achieve a worm reduction rate of 42–44%. To improve the efficiency of the vaccine against Schistosoma japonicum, we immunized mice with a combination of pcDNA vector-encoded 26-kDa SjGST (pcDNA/SjGST), IL-12 expressing-plasmid (pIL-12), and rSjGST. Co-vaccination with pcDNA/SjGST, pIL-12, and rSjGST led to a reduction in worm burden, hepatic egg burden, and the size of liver tissue granulomas than that in the untreated infection controls. In addition, we detected high levels of specific IgG, IgG1, and IgG2a against the rSjGST antigen in infected mice vaccinated with this combination of pcDNA/SjGST, pIL-12, and rSjGST. Moreover, high expression levels of Th2 cytokines, including IL-4 and IL-10, were also detected in this group, without diminished levels of IL-12, INF-γ, and TNF-α cytokines that are related to parasite killing. In conclusion, we have developed a new vaccination regimen against S. japonicum infection and shown that co-immunization with pcDNA/SjGST vaccine, pIL-12, and rSjGST has significant anti-parasite, anti-hepatic egg and anti-pathology effects in mice. The efficacy of this vaccination method should be further validated in large animals such as water buffalo. This method may help to reduce the transmission of zoonotic schistosomiasis japonica.  相似文献   

14.
Dynamic analysis of redox-based processes in living cells is now restricted by the lack of appropriate redox biosensors. Conventional redox-sensitive GFPs (roGFPs) are limited by undefined specificity and slow response to changes in redox potential. In this study we demonstrate that the fusion of human glutaredoxin-1 (Grx1) to roGFP2 facilitates specific real-time equilibration between the sensor protein and the glutathione redox couple. The Grx1-roGFP2 fusion protein allowed dynamic live imaging of the glutathione redox potential (E(GSH)) in different cellular compartments with high sensitivity and temporal resolution. The biosensor detected nanomolar changes in oxidized glutathione (GSSG) against a backdrop of millimolar reduced glutathione (GSH) on a scale of seconds to minutes. It facilitated the observation of redox changes associated with growth factor availability, cell density, mitochondrial depolarization, respiratory burst activity and immune receptor stimulation.  相似文献   

15.
本研究将还原型谷胱甘肽(GSH)共价结合在异硫氰酸根末端磁性微粒表面,制备了具有超顺磁性的谷胱甘肽-磁性微粒亲和介质,以表面修饰有谷胱甘肽的磁性微粒为载体,建立了谷胱甘肽巯基转移酶(GST)融合蛋白的纯化体系。对100μL细胞裂解液纯化体系所需磁性微粒用量、谷胱甘肽-磁性微粒与细胞裂解液的孵育时间、清洗条件等进行了优化。以聚丙烯酰胺凝胶电泳对融合蛋白的纯度进行了检测,Bradford方法对融合蛋白进行了定量测定,对纯化得到的目的蛋白进行了Western blotting分析。结果表明,每毫克异硫氰酸根末端磁性微粒对GSH的固定化容量为150μg,10 mg谷胱甘肽-磁性微粒可满足100μL细胞裂解体系中目的蛋白的纯化,最佳孵育时间为40 min,对GST融合蛋白的平均纯化量为516μg。本方法快速、简便,基于磁性微粒的分离还可实现自动化,对GST融合蛋白的纯化具有很好的应用前景。  相似文献   

16.
17.
Glutathione transferases (GSTs) are multifunctional enzymes found in many organisms. We recently identified vanadium-binding GSTs, designated AsGSTs, from the vanadium-rich ascidian, Ascidia sydneiensis samea. In this study, the metal-selectivity of AsGST-I was investigated. Immobilized metal ion affinity chromatography (IMAC) analysis revealed that AsGST-I binds to V(IV), Fe(III), and Cu(II) with high affinity in the following order Cu(II)>V(IV)>Fe(III), and to Co(II), Ni(II), and Zn(II) with low affinity. The GST activity of AsGST-I was inhibited dose-dependently by not V(IV) but Cu(II). A competition experiment demonstrated that the binding of V(IV) to AsGST-I was not inhibited by Cu(II). These results suggest that AsGST-I has high V(IV)-selectivity, which can confer the specific vanadium accumulation of ascidians. Because there are few reports on the metal-binding ability of GSTs, we performed the same analysis on SjGST (GST from the schistosome, Schistosoma japonicum). SjGST also demonstrated metal-binding ability although the binding pattern differed from that of AsGST-I. The GST activity of SjGST was inhibited by Cu(II) only, as that of AsGST-I. Our results indicate a possibility that metal-binding abilities of GSTs are conserved among organisms, at least animals, which is suggestive of a new role for these enzymes in metal homeostasis or detoxification.  相似文献   

18.
A plasmid encoding a fusion protein interlinked by thrombin recognition sequence between glutathione S-transferase and Japanese quail ovalbumin (without 40 amino acid residues from the 5′-end of the ORF) has been constructed, employing the expression system pGEX-2T. The deglycosylated fusion protein (64 kDa) was purified by affinity chromatography on glutathione agarose beads, analyzed by SDS-polyacrylamide gel electrophoresis, immunochemically detected with antiserum raised against Japanese quail ovalbumin and tested for its stability.  相似文献   

19.
After affinity purification on immobilized glutathione, insect-cell-derived glutathione S-transferase (GST) fusion proteins contain variable amounts of protein contaminants of about 23-24 kDa. We have isolated these glutathione-binding proteins from the widely used Sf9 and Hi5 insect cell lines and characterized them by LC-MS and N-terminal sequencing. Based on the observation that these proteins have higher affinity for glutathione than GST fusions, we have found that by using differential elution conditions the amount of such contaminants in GST fusion preparations can be strongly reduced directly during the affinity purification step. The main interest of these results is that they are not restricted to a specific construct, but rather they seem to apply to various insect-cell-derived GST fusions.  相似文献   

20.
We have previously shown that a 30 kDa DNA-binding protein isolated from rat cell nuclei exhibits the chemical and immunological properties of glutathione S-transferase Yb subunits [Bennett, Spector & Yeoman (1986) J. Cell Biol. 102, 600-609]. It was of interest, therefore, to determine whether Yb subunits isolated from rat liver nuclei would return to nuclear fractions upon reintroduction to cell cytoplasms via red-blood-cell-mediated fusion. Labelled Yb subunits were associated with nuclear fractions 60 min after cell fusion. The microinjected protein remained associated with the nuclei for 18 h and was not extractable with low-salt washes. In addition, injected Yb subunits were found to equally distribute between extractable (56%) and residual (44%) nuclear fractions. These experiments demonstrate that glutathione S-transferase Yb subunits isolated from nuclei rapidly translocate to nuclei upon reintroduction into cell cytoplasms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号