首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the role of the C-terminal of the alpha-subunit in the insulin receptor family by characterizing chimeric mini-receptor constructs comprising the first three domains (468 amino acids) of insulin receptor (IR) or insulin-like growth factor I receptor (IGFIR) combined with C-terminal domain from either insulin receptor (IR) (residues 704-719), IGFIR, or insulin receptor-related receptor (IRRR). The constructs were stably expressed in baby hamster kidney cells and purified, and binding affinities were determined for insulin, IGFI, and a single chain insulin/IGFI hybrid. The C-terminal domain of IRRR was found to abolish binding in IR and IGFIR context, whereas other constructs bound ligands. The two constructs with first three domains of the IR demonstrated low specificity for ligands, all affinities ranging from 3.0 to 15 nM. In contrast, the constructs with the first three domains of the IGFIR had high specificity, the affinity of the novel minimized IGFIR for IGFI was 1.5 nM, whereas the affinity for insulin was more than 3000 nM. When swapping the C-terminal domains in either receptor context only minor changes were observed in affinities (<3-fold), demonstrating that the carboxyl-terminal of IR and IGFIR alpha-subunits are interchangeable and suggesting that this domain is part of the common binding site.  相似文献   

2.
We have previously shown, using truncated soluble recombinant receptors, that substituting the 62 N-terminal amino acids of the alpha subunit from the insulin-like growth factor I receptor (IGFIR) with the corresponding 68 amino acids from the insulin receptor (IR) results in a chimeric receptor with an approximately 200-fold increase in affinity for insulin and only a 5-fold decrease in insulin-like growth factor I (IGFI) affinity (Kjeldsen, T., Andersen, A. S., Wiberg, F. C., Rasmussen, J. S., Sch?ffer, L., Balschmidt, P., M?ller, K. B., and M?ller, N. P. H. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 4404-4408). We demonstrate that these 68 N-terminal amino acids of the IR also confer insulin affinity on the intact IGFI holoreceptor both in the membrane-bound state and when solubilized by Triton X-100. Furthermore, this domain can be subdivided into two regions (amino acids 1-27 and 28-68 of the IR alpha subunit) that, when replacing the corresponding IGFIR sequences, increases the insulin affinity of truncated soluble receptor chimeras 8- and 20-fold, respectively, with only minor effects on the IGFI affinity. Within the latter of these two regions, we found that amino acids 38-68 of the IR, representing 13 amino acid differences from IGFIR, confer the same 20-fold increase in insulin affinity on the IGFIR. Finally, the amino acids from position 42 to 50 are not responsible for this increase in insulin affinity. We thus propose that at least two determinants within the 68 N-terminal amino acids of the insulin receptor are involved in defining the ligand specificity of the insulin receptor, and that one or a combination of the remaining seven amino acid differences between position 38 and 68 are involved in conferring insulin affinity on the insulin receptor.  相似文献   

3.
Chimeric insulin/insulin-like growth factor-1 receptors and insulin receptor alpha-subunit point mutants were characterized with respect to their binding properties for insulin and insulin-like growth factor-1 (IGF-1) and their ability to translate ligand interaction into tyrosine kinase activation in intact cells. We found that replacement of the amino-terminal 137 amino acids of the insulin receptor (IR) with the corresponding 131 amino acids of the IGF-1 receptor (IGF-1R) resulted in loss of affinity for both ligands. Further replacement of the adjacent cysteine region with IGF-1R sequences fully reconstituted affinity for IGF-1, but only marginally for insulin. Unexpectedly, replacement of the IR cysteine-rich domain alone by IGF-1R sequences created a high affinity receptor for both insulin and IGF-1. The binding characteristics of all receptor chimeras reflected the potential of both ligands to regulate the receptor tyrosine kinase activity in intact cells. Our chimeric receptor data, in conjunction with IR amino-terminal domain point mutants, strongly suggest major contributions of structural determinants in both amino- and carboxyl-terminal IR alpha-subunit regions for the formation of the insulin-binding pocket, whereas, surprisingly, the residues defining IGF-1 binding are present predominantly in the cysteine-rich domain of the IGF-1R.  相似文献   

4.
The insulin receptor and type I IGF receptor are closely related in structure and function. The receptors are heterotetrameric glycoproteins, of structure αββα, which are widely distributed in mammalian tissues. A third member of this receptor family has been described, the insulin receptor-related receptor, for which a ligand has still to be identified. It has also been demonstrated that the insulin receptor and IGF receptor form αββ′α′ hybrids in cells expressing both receptors.The key elements in the function of any receptor are recognition of ligand and transmission of an intracellular signal. In the insulin and IGF receptors, determinants of binding specificity are contained within amino-terminal and cysteine-rich domains of the extracellular α-subunit. Intracellular signalling is dependent on ligand activated tyrosine kinase activity in the transmembrane β-subunit, which phosphorylates both the receptor itself and the specific substrate insulin receptor substrate-1 (IRS-1). Phosphorylated IRS-1 binds the enzyme phosphatidylinositol 3-kinase and may act as a multivalent docking site for SH2 domains of other proteins involved in signalling. The possibility that some signalling molecules interact directly with the receptors has not been ruled out.The specificity of action of insulin and IGFs in vivo depends on differences between the respective receptors in tissue distribution, ligand binding specificity and intrinsic signalling capacity. However, the detailed aspects of gene and receptor structure which underly these functional differences are still poorly understood. Moreover, the issue of specificity is complicated by the existence of hybrid and atypical receptors, which in principle could bind and respond to both insulin and IGF-I, although the physiological significance of these receptor subtypes is at present unclear.  相似文献   

5.
The insulin receptor (IR), the insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor-related receptor (IRR) are covalently-linked homodimers made up of several structural domains. The molecular mechanism of ligand binding to the ectodomain of these receptors and the resulting activation of their tyrosine kinase domain is still not well understood. We have carried out an amino acid residue conservation analysis in order to reconstruct the phylogeny of the IR Family. We have confirmed the location of ligand binding site 1 of the IGF1R and IR. Importantly, we have also predicted the likely location of the insulin binding site 2 on the surface of the fibronectin type III domains of the IR. An evolutionary conserved surface on the second leucine-rich domain that may interact with the ligand could not be detected. We suggest a possible mechanical trigger of the activation of the IR that involves a slight 'twist' rotation of the last two fibronectin type III domains in order to face the likely location of insulin. Finally, a strong selective pressure was found amongst the IRR orthologous sequences, suggesting that this orphan receptor has a yet unknown physiological role which may be conserved from amphibians to mammals.  相似文献   

6.
The IR (insulin receptor) and IGFR (type I insulin-like growth factor receptor) are found as homodimers, but the respective pro-receptors can also heterodimerize to form insulin-IGF hybrid receptors. There are conflicting data on the ligand affinity of hybrids, and especially on the influence of different IR isoforms. To investigate further the contribution of individual ligand binding epitopes to affinity and specificity in the IR/IGFR family, we generated hybrids incorporating both IR isoforms (A and B) and IR/IGFR domain-swap chimaeras, by ectopic co-expression of receptor constructs in Chinese hamster ovary cells, and studied ligand binding using both radioligand competition and bioluminescence resonance energy transfer assays. We found that IR-A-IGFR and IR-B-IGFR hybrids bound insulin with similar relatively low affinity, which was intermediate between that of homodimeric IR and homodimeric IGFR. However, both IR-A-IGFR and IR-B-IGFR hybrids bound IGF-I and IGF-II with high affinity, at a level comparable with homodimeric IGFR. Incorporation of a significant fraction of either IR-A or IR-B into hybrids resulted in abrogation of insulin- but not IGF-I-stimulated autophosphorylation. We conclude that the sequence of 12 amino acids encoded by exon 11 of the IR gene has little or no effect on ligand binding and activation of IR-IGFR hybrids, and that hybrid receptors bind IGFs but not insulin at physiological concentrations regardless of the IR isoform they contained. To reconstitute high affinity insulin binding within a hybrid receptor, chimaeras in which the IGFR L1 or L2 domains had been replaced by equivalent IR domains were co-expressed with full-length IR-A or IR-B. In the context of an IR-A-IGFR hybrid, replacement of IR residues 325-524 (containing the L2 domain and part of the first fibronectin domain) with the corresponding IGFR sequence increased the affinity for insulin by 20-fold. We conclude that the L2 and/or first fibronectin domains of IR contribute in trans with the L1 domain to create a high affinity insulin-binding site within a dimeric receptor.  相似文献   

7.
Determinants of target gene specificity for steroid/thyroid hormone receptors   总被引:84,自引:0,他引:84  
K Umesono  R M Evans 《Cell》1989,57(7):1139-1146
The molecular specificity of the receptors for steroid and thyroid hormones is achieved by their selective interaction with DNA binding sites referred to as hormone response elements (HREs). HREs can differ in primary nucleotide sequence as well as in the spacing of their dyadic half-sites. The target gene specificity of the glucocorticoid receptor can be converted to that of the estrogen receptor by changing three amino acids clustered in the first zinc finger. Remarkably, a single Gly to Glu change in this region produces a receptor that recognizes both glucocorticoid and estrogen response elements. Further replacement of five amino acids in the stem of the second zinc finger transforms the specificity to that of the thyroid hormone receptor. These findings localize structural determinants required for discrimination of HRE sequence and half-site spacing, respectively, and suggest a simple pathway for the coevolution of receptor DNA binding domains and hormone-responsive gene networks.  相似文献   

8.
The luteinizing hormone (LH) receptor plays an essential role in male and female gonadal function. Together with the follicle-stimulating hormone (FSH) and thyroid stimulating hormone (TSH) receptors, the LH receptor forms the family of glycoprotein hormone receptors. All glycoprotein hormone receptors share a common modular topography, with an N-terminal extracellular ligand binding domain and a C-terminal seven-transmembrane transduction domain. The ligand binding domain consists of 9 leucine-rich repeats, flanked by N- and C-terminal cysteine-rich regions. Recently, crystal structures have been published of the extracellular domains of the FSH and TSH receptors. However, the C-terminal cysteine-rich region (CCR), also referred to as the "hinge region," was not included in these structures. Both structure and function of the CCR therefore remain unknown. In this study we set out to characterize important domains within the CCR of the LH receptor. First, we mutated all cysteines and combinations of cysteines in the CCR to identify the most probable disulfide bridges. Second, we exchanged large parts of the LH receptor CCR by its FSH receptor counterparts, and characterized the mutant receptors in transiently transfected HEK 293 cells. We zoomed in on important regions by focused exchange and deletion mutagenesis followed by alanine scanning. Mutations in the CCR specifically decreased the potencies of LH and hCG, because the potency of the low molecular weight agonist Org 41841 was unaffected. Using this unbiased approach, we identified Asp(330) and Tyr(331) as key amino acids in LH/hCG mediated signaling.  相似文献   

9.
10.
To define the structures within the insulin receptor (IR) that are required for high affinity ligand binding, we have used IR fragments consisting of four amino-terminal domains (L1, cysteine-rich, L2, first fibronectin type III domain) fused to sequences encoded by exon 10 (including the carboxyl terminus of the alpha-subunit). The fragments contained one or both cysteine residues (amino acids 524 and 682) that form disulfides between alpha-subunits in native IR. A dimeric fragment designated IR593.CT (amino acids 1-593 and 704-719) bound (125)I-insulin with high affinity comparable to detergent-solubilized wild type IR and mIR.Fn0/Ex10 (amino acids 1-601 and 650-719) and greater than that of dimeric mIR.Fn0 (amino acids 1-601 and 704-719) and monomeric IR473.CT (amino acids 1-473 and 704-719). However, neither IR593.CT nor mIR.Fn0 exhibited negative cooperativity (a feature characteristic of the native insulin receptor and mIR.Fn0/Ex10), as shown by failure of unlabeled insulin to accelerate dissociation of bound (125)I-insulin. Anti-receptor monoclonal antibodies that recognize epitopes in the first fibronectin type III domain (amino acids 471-593) and inhibit insulin binding to wild type IR inhibited insulin binding to mIR.Fn0/Ex10 but not IR593.CT or mIR.Fn0. We conclude the following: 1) precise positioning of the carboxyl-terminal sequence can be a critical determinant of binding affinity; 2) dimerization via the first fibronectin domain alone can contribute to high affinity ligand binding; and 3) the second dimerization domain encoded by exon 10 is required for ligand cooperativity and modulation by antibodies.  相似文献   

11.
We obtained 20 mouse monoclonal antibodies specific for human type I insulin-like growth factor (IGF) receptors, using transfected cells expressing high levels of receptors (IGF-1R/3T3 cells) as immunogen. The antibodies immunoprecipitated receptor.125I-IGF-I complexes and biosynthetically labeled receptors from IGF-1R/3T3 cells but did not react with human insulin receptors or rat type I IGF receptors. Several antibodies stimulated DNA synthesis in IGF-1R/3T3 cells, but the maximum stimulation was only 25% of that produced by IGF-I. The antibodies fell into seven groups recognizing distinct epitopes and with different effects on receptor function. All the antibodies reacted with the extracellular portion of the receptor, and epitopes were localized to specific domains by investigating their reaction with a series of chimeric IGF/insulin receptor constructs. Binding of IGF-I was inhibited up to 90% by antibody 24-60 reacting in the region 184-283, and by antibody 24-57 reacting in the region 440-586. IGF-I binding was stimulated up to 2.5-fold by antibodies 4-52 and 16-13 reacting in the region 62-184, and by antibody 26-3 reacting downstream of 283. The latter two groups of antibodies also dramatically stimulated insulin binding to intact IGF-1R/3T3 cells (by up to 50-fold), and potentiated insulin stimulation of DNA synthesis. Scatchard analysis indicated that in the presence of these antibodies, the affinity of the type I IGF receptor for insulin was comparable with that of the insulin receptor. These data indicate that regions both within and outside the cysteine-rich domain of the receptor alpha-subunit are important in determining the affinity and specificity of ligand binding. These antibodies promise to be valuable tools in resolving issues of IGF-I receptor heterogeneity and in studying the structure and function of classical type I receptors and insulin/IGF receptor hybrids.  相似文献   

12.
13.
We have prepared by semisynthetic methods a two-chain insulin/insulin-like growth factor I hybrid that contains a synthetic peptide related to residues 22-41 of insulin-like growth factor I linked via peptide bond to ArgB22 of des-octapeptide-(B23-B30)-insulin and have applied the analog to the analysis of ligand interactions with the type I insulin-like growth factor and insulin receptors of placental plasma membranes. Relative potencies for the inhibition of 125I-labeled insulin-like growth factor I binding to type I insulin-like growth factor receptors were 1.0:0.20:0.003 for insulin-like growth factor I, the hybrid analog, and insulin, respectively. Corresponding relative potencies for the inhibition of 125I-labeled insulin binding to insulin receptors were 0.007:0.28:1 for the three respective peptides. Additional studies identified that the hybrid analog interacts with only one of two populations of insulin-like growth factor I binding sites on placental plasma membranes and permitted the analysis of insulin-like growth factor I interactions with the separate populations of binding sites. We conclude that (a) des-octapeptide-(B23-B30)-insulin can serve well as a scaffold to support structural elements of insulin-like growth factor I and insulin necessary for high affinity binding to their receptors, (b) major aspects of structure relevant to the conferral of receptor binding affinity lie in the COOH-terminal region of the insulin B chain and in the COOH-terminal region of the insulin-like growth factor I B domain and in its C domain, and (c) the evolution of ligand-receptor specificity in these systems has relied as much on restricting interactions (through the selective introduction of negative structural elements) as it has on enhancing interactions (through the introduction of affinity conferring elements of structure).  相似文献   

14.
Insulin stimulates a 2-fold increase in the amount of tyrosine aminotransferase and a 5–10-fold increase in the rate of amino acid transport in dexamethasone-treated rat hepatoma cells. In order to determine whether these effects are mediated by insulin receptors or receptors for insulin-like growth factors, we have examined the binding of 125I-labeled insulin and 125I-labeled multiplication-stimulating activity, a prototype insulin-like growth factor, and compared the biological effects of these polypeptides. Insulin and multiplication-stimulating activity cause an identical increase in transaminase activity and transport velocity; half-maximal biological effects were observed at 35 ng/ml (5.5 nM) insulin and 140 ng/ml multiplication-stimulating activity. The hepatoma cells display typical insulin receptors of appropriate specificity; half-maximal displacement of tracer insulin binding occured at 33 ng/ml unlabeled insulin, but only at 2500 ng/ml unlabeled multiplication-stimulating activity. Specific multiplication-stimulating activity receptors also were demonstrated with which insulin did not interact even at 10 μg/ml. Half-maximal displacement of tracer multiplication-stimulating activity occured at 200 ng/ml unlabeled multiplication-stimulating activity. We conclude that insulin cannot act via the multiplication-stimulating activity receptor and presumably acts via typical insulin receptors. The effects of multiplication-stimulating activity on enzyme induction and amino acid transport are probably mediated primarily via the multiplication-stimulating activity receptor.  相似文献   

15.
The high resolution crystal structure of an N-terminal fragment of the IGF-I receptor, has been reported. While this fragment is itself devoid of ligand binding activity, mutational analysis has indicated that its N terminus (L1, amino acids 1-150) and the C terminus of its cysteine-rich domain (amino acids 190-300) contain ligand binding determinants. Mutational analysis also suggests that amino acids 692-702 from the C terminus of the alpha subunit are critical for ligand binding. A fusion protein, formed from these fragments, binds IGF-I with an affinity similar to that of the whole extracellular domain, suggesting that these are the minimal structural elements of the IGF-I binding site. To further characterize the binding site, we have performed structure directed and alanine-scanning mutagenesis of L1, the cysteine-rich domain and amino acids 692-702. Alanine mutants of residues in these regions were transiently expressed as secreted recombinant receptors and their affinity was determined. In L1 alanine mutants of Asp(8), Asn(11), Tyr(28), His(30), Leu(33), Leu(56), Phe(58), Arg(59), and Trp(79) produced a 2- to 10-fold decrease in affinity and alanine mutation of Phe(90) resulted in a 23-fold decrease in affinity. In the cysteine-rich domain, mutation of Arg(240), Phe(241), Glu(242), and Phe(251) produced a 2- to 10-fold decrease in affinity. In the region between amino acids 692 and 702, alanine mutation of Phe(701) produced a receptor devoid of binding activity and alanine mutations of Phe(693), Glu(693), Asn(694), Leu(696), His(697), Asn(698), and Ile(700) exhibited decreases in affinity ranging from 10- to 30-fold. With the exception of Trp(79), the disruptive mutants in L1 form a discrete epitope on the surface of the receptor. Those in the cysteine-rich domain essential for intact affinity also form a discrete epitope together with Trp(79).  相似文献   

16.
B Zhang  R A Roth 《Biochemistry》1991,30(21):5113-5117
We constructed and expressed chimeric receptor cDNAs with insulin receptor exon 3 (residues 191-297 of the cysteine-rich region) replaced with either the comparable region of the insulin-like growth factor I receptor (IGF-IR) or the insulin receptor related receptor (IRR). Both chimeric receptors still could bind insulin with as high affinity as the wild-type receptor. In addition, chimeric receptors containing exon 3 of the IGF-IR could also bind with high affinity both IGF-I and IGF-II. In contrast, chimeric receptors containing exon 3 of IRR did not bind either IGF-I, IGF-II, or relaxin. These results indicate that (1) the high affinity of binding of insulin to its receptor can occur in the absence of insulin receptor specific residues encoded by exon 3, the cysteine-rich region; (2) the cysteine-rich region of the IGF-I receptor can confer high-affinity binding to both IGF-I and IGF-II; and 3) the IRR is unlikely to be a receptor for either IGF-I, IGF-II, or relaxin.  相似文献   

17.
The crystal structures of complexes of human growth hormone (hGH) with the growth hormone and prolactin receptors (hGHR and hPRLR, respectively), together with the mutational data available for these systems, suggest that an extraordinary combination of conformational adaptability, together with finely tuned specificity, governs the molecular recognition processes operative in these systems. On the one hand, in the active 1:2 ligand-receptor complexes, 2 copies of the same receptor use the identical set of binding determinants to recognize topographically different surfaces on the hormone. On the other hand, comparing the 1:1 hGH-hGHR and hGH-hPRLR complexes, 2 distinct receptors use this same set of binding determinants to interact with the identical binding site on the ligand, even though few residues among the binding determinants are conserved. The structural evidence demonstrates that this versatility is accomplished by local conformational flexibility of the binding loops, allowing adaptation to different binding environments, together with rigid-body movements of the receptor domains, necessary for the creation of specific interactions with the same binding site.  相似文献   

18.
Insulin receptor (IR) and insulin-like growth factor I receptor (IGF-IR) are both from the same subgroup of receptor tyrosine kinases that exist as covalently bound receptor dimers at the cell surface. For both IR and IGF-IR, the most described forms are homodimer receptors. However, hybrid receptors consisting of one-half IR and one-half IGF-IR are also present at the cell surface. Two splice variants of IR are expressed that enable formation of two isoforms of the IGF-IR/IR hybrid receptor. In this study, these two splice variants of hybrid receptors were studied with respect to binding affinities of insulin, insulin-like growth factor I (IGF-I), and insulin-like growth factor II (IGF-II). Unlike previously published data, in which semipurified receptors have been studied, we found that the two hybrid receptor splice variants had similar binding characteristics with respect to insulin, IGF-I, and IGF-II binding. We studied both semipurified and purified hybrid receptors. In all cases we found that IGF-I had at least 50-fold higher affinity than insulin, irrespective of the splice variant. The binding characteristics of insulin and IGF-I to both splice variants of the hybrid receptors were similar to classical homodimer IGF-IR.  相似文献   

19.
The major class of atrial natriuretic peptide (ANP) receptors was isolated from cultured vascular smooth muscle cells, and a partial amino acid sequence was obtained. This allowed the isolation of cDNA clones from which the entire amino acid sequence was established. The smooth muscle cell ANP receptor appears to be synthesized as a 537-amino acid precursor with an N-terminal membrane translocation signal. The mature form consists of 496 amino acids with a single potential transmembrane domain predicting a 37-amino acid cytoplasmic domain and a large, acidic, extracellular domain low in cysteine and probably containing attached carbohydrate. The receptor is therefore similar in structure to the growth factor receptors but notably lacks repetitive cysteine-rich domains and has a relatively small intracellular domain. Expression of the cloned receptor in Xenopus oocytes elicited high affinity, membrane-associated binding sites for ANP and for truncated and internally deleted analogs of ANP. These results reflect the ligand binding specificity found for the major class of ANP receptors on smooth muscle cells and thus provide additional evidence that two distinct ANP receptors exist since ANP receptor-coupled guanylate cyclase activity exhibits a very different ANP analog specificity.  相似文献   

20.
Insulin receptor structure and its implications for the IGF-1 receptor   总被引:1,自引:0,他引:1  
The insulin receptor (isoforms IR-A and IR-B) and the type-I insulin-like growth factor receptor (IGF-1R) are homologous, multi-domain tyrosine kinases that bind insulin and IGF-1 with differing specificity. IR is involved in metabolic regulation and IGF-1R in normal growth and development. IR-A also binds IGF-2 with an affinity comparable to IGF-1R and, like the latter, is implicated in a range of cancers. The recent structure of the IR ectodomain dimer explains many features of ligand-receptor binding and provides insight into the structure of the intact ligand-binding site in both receptors. The structures of the L1-CR-L2 fragments of IR and IGF-1R reveal major differences in the regions that govern ligand specificity. The IR ectodomain X-ray structure raises doubts about that obtained by STEM reconstruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号