首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new copper(II) complex with chloride bridges and mixed blocking ligands, [{Cu(pzPh)(Opo)}2(μ-Cl)2] (1), whereby pzPh = 3-phenyl-pyrazolyl, and OpoH = 2-hydroxypyridine-N-oxide, has been obtained by degrading tris(pyrazolyl)borate in the presence of hydrated CuCl2 salt and the ligand Opo. The molecular structure of 1 was solved by X-ray diffraction. The two Cu(II) atoms of the dinuclear complex have a pyramidal arrangement in which the two pyramids share one base-to-apex edge with parallel basal planes. Magnetic susceptibility measurements revealed ferromagnetic coupling between the Cu atoms, with J = +8.72 cm−1. X-band EPR spectra of CH2Cl2 solutions of 1 were recorded at different temperatures.  相似文献   

2.
The bidentate ligand benzylacetylacetone was used to synthesize the Cu(II) complexes 1 and 2 without and with 4,4-bipyridine ligand, respectively. The complexes were characterized by analytical and spectroscopic studies. The mononuclear complex [Cu(C10H9O2)2] (1) has been synthesized by the reaction of copper acetate with the ligand whereas the tetranuclear complex [Cu4(4,4-bpy)4(C10H9O2)4(C2H3O2)4] (2) has been synthesized by the reaction of copper acetate with the ligand followed by the addition of 4,4-bipyridine. The X-ray analysis shows that the complex 1 has square planar geometry and the complex 2 has square pyramidal geometry around the metal centers. The thermogravimetric studies showed that the complexes undergo decomposition in multiple steps.  相似文献   

3.
Two new magnetic copper compounds were obtained using the 4,4,4-trifluoro-1-furoylbutane-1,3-dione (Ftfac) ligand and two nitroxide radicals: 3-pyridyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (NITmPy) and 4-hydroxy-2,2,6,6-tetramethylpiperidinyl-N-oxy (Tempol). The complexes with formula [Cu(Ftfac)2(NITmPy)2] (1) and [Cu(Ftfac)2(Tempol)] (2) were structurally characterized by single-crystal X-ray diffraction. In compound 1, the copper ion has a distorted octahedral environment, bound to two NITmpPy ligands through the nitrogen atom of the pyridine ring. In compound 2, the copper ion has a distorted pyramidal environment in which the apical position is occupied by the oxygen atom of the Tempol hydroxyl group. The temperature dependence of the magnetic susceptibility of the two compounds was investigated. It was found that compound 1 presents ferromagnetic interaction (J = 9.1 cm−1) among copper(II) ions and NITmPy radicals. As a result of the interconnection between molecular moieties through H-bonds, compound 2 presents an unusual magnetic behavior with alternating ferro- and antiferromagnetic interactions.  相似文献   

4.
Summary We have measured Ca2+ uptake and Ca2+ release in isolated permeabilized pancreatic acinar cells and in isolated membrane vesicles of endoplasmic reticulum prepared from these cells. Ca2+ uptake into cells was monitored with a Ca2+ electrode, whereas Ca2+ uptake into membrane vesicles was measured with45Ca2+. Using inhibitors of known action, such as the H+ ATPase inhibitors NBD-Cl and NEM, the Ca2+ ATPase inhibitor vanadate as well as the second messenger inositol 1,4,5-trisphosphate (IP3) and its analog inositol 1,4,5-trisphosphorothioate (IPS3), we could functionally differentiate two non-mitochondrial Ca2+ pools. Ca2+ uptake into the IP3-sensitive Ca2+ pool (IsCaP) occurs by a MgATP-dependent Ca2+ uptake mechanism that exchanges Ca2+ for H+ ions. In the absence of ATP Ca2+ uptake can occur to some extent at the expense of an H+ gradient that is established by a vacuolar-type MgATP-dependent H+ pump present in the same organelle. The other Ca2+ pool takes up Ca2+ by a vanadate-sensitive Ca2+ ATPase and is insensitive to IP3 (IisCaP). The IsCaP is filled at higher Ca2+ concentrations (10–6 mol/liter) which may occur during stimulation. The low steady-state [Ca2+] of 10–7 mol/liter is adjusted by the IisCaP.It is speculated that both Ca2+ pools can communicate with each other, the possible mechanism of which, however, is at present unknown.  相似文献   

5.
Summary Apical Na+ entry into frog skin epithelium is widely presumed to be electrodiffusive in nature, as for other tight epithelia. However, in contrast to rabbit descending colon andNecturus urinary bladder, the constant field equation has been reported to fit the apical sodium current (N Na)-membrane potential (mc) relationship over only a narrow range of apical membrane potentials or to be inapplicable altogether. We have re-examined this issue by impaling split frog skins across the basolateral membrane and examining the current-voltage relationships at extremely early endpoints in time after initiating pulses of constant transepithelial voltage. In this study, the rapid transient responses in mc were completed within 0.5 to 3.5 msec. Using endpoints to 1 to 25 msec, the Goldman equation provided excellent fits of the data over large ranges in apical potential of 300 to 420 mV, from approximately –200 to about +145 mV (cell relative to mucosa). Split skins were also studied when superfused with high serosal K+ in order to determine whether theI Na-mc relationship could be generated purely by transepithelial measurements. Under these conditions, the basolateral membrane potential was found to be –10±3 mV (cell relative to serosa, mean±se), the basolateral fractional resistance was greater than zero, and the transepithelial current was markedly and reversibly reduced. For these reasons, use of high serosal K+ is considered inadvisable for determining theI Na-mc relationship, at least in those tissues (such as frog skin) where more direct measurements are technically feasible. Analysis of theI Na-mc relationships under baseline conditions provided estimates of intracellular Na+ concentration and of apical Na+ permeability of 9 to 14mm and of 3 × 10–7 cm · sec–1, respectively, in reasonable agreement with estimates obtained by different techniques.  相似文献   

6.
The proportions of calcium (Ca2+) channel subtypes in chick or rat P2 fraction and NG 108-15 cells were investigated using selective L-, N-, P- and P/Q- type Ca2+ channel blockers. KCl-stimulated 45Ca2+ uptake by chick P2 fraction was blocked by 40~50% using N-type Ca2+ channel blockers [-conotoxin GVIA, aminoglycoside antibiotics and dynorphin A(1–13)], but was not inhibited by P- or P/Q-type blockers (-agatoxin IVA or -conotoxin MVIIC). On the other hand, KCl-stimulated 45Ca2+ uptake by rat P2 fraction was blocked by 30~40% using P- or P/Q-type Ca2+ channel blockers, but was not inhibited by N-type Ca2+ channel blockers. The L-type Ca2+ channel blockers 1,4-dihydropyridines, diltiazem and verapamil, but not calciseptine (CaS), inhibited both KCl-stimulated 45Ca2+ uptake and veratridine-induced 22Na+ uptake by chick or rat P2 fraction with similar IC50 values. CaS did not have any effect on 45Ca2+ uptake by either chick or rat P2 fraction. In NG108-15 cells, CaS, -agatoxin IVA and -conotoxin MVIIC, but not -conotoxin GVIA, inhibited KCl-stimulated 45Ca2+ uptake by 30–40%. Various combinations of these Ca2+ channel blockers had no significant additional effects in chick or rat P2 fraction or NG 108-15 cells. These findings suggest that KCl-stimulated 45Ca2+ uptake by chick or rat P2 fraction and NG 108-15 cells is a convenient and useful model for screening whether or not natural or synthetic substances have selective effects as L-, N-, P-, or P/Q- type Ca2+ channel antagonists or agonists.  相似文献   

7.
Summary We have examined the effect of internal and external pH on Na+ transport across toad bladder membrane vesicles. Vesicles prepared and assayed with a recently modified procedure (Garty & Asher, 1985) exhibit large, rheogenic, amiloridesensitive fluxes. Of the total22Na uptake measured 0.5–2.0 min after introducing tracer, 80±4% (mean±se,n=9) is blocked by the diuretic with aK 1 of 2×10–8 m. Thus, this amiloridesensitive flux is mediated by the apical sodium-selective channels. Varying the internal (cytosolic) pH over the physiologic range 7.0–8.0 had no effect on sodium transport; this result suggests that variation of intracellular pHin vivo has no direct apical effect on modulating sodium uptake. On the other hand,22Na was directly and monotonically dependent on external pH. External acidification also reduced the amiloride-sensitive efflux across the walls of the vesicles. This inhibition of22Na efflux was noted at external Na+ concentrations of both 0.2 m and 53mm.These results are different from those reported with whole toad bladder. A number of possible bases for these differences are considered and discussed. We suggest that the natriferic response induced by mucosal acidification of whole toad urinary bladder appears to operate indirectly through one or more factors, presumably cytosolic, present in whole cells and absent from the vesicles.  相似文献   

8.
The major protein in the sarcoplasmic reticulum (SR) membrane is the Ca2+ transporting ATPase which carries out active Ca2+ pumping at the expense of ATP hydrolysis. The aim of this work was to elucidate the mechanisms by which oxidative stress induced by Fenton's reaction (Fe2+ + H2O2 HO· + OH+ Fe3+) alters the function of SR. ATP hydrolysis by both SR vesicles (SRV) and purified ATPase was inhibited in a dose-dependent manner in the presence of 0–1.5 MM H2O2 plus 50 M Fe2+ and 6 mM ascorbate. Ca2+ uptake carried out by the Ca2+-ATPase in SRV was also inhibited in parallel. The inhibition of hydrolysis and Ca2+ uptake was not prevented by butylhydroxytoluene (BHT) at concentrations which significantly blocked formation of thiobarbituric acid-reactive substances (TBARS), suggesting that inhibition of the ATPase was not due to lipid peroxidation of the SR membrane. In addition, dithiothreitol (DTT) did not prevent inhibition of either ATPase activity or Ca2+ uptake, suggesting that inhibition was not related to oxidation of ATPase thiols. The passive efflux of 45Ca2+ from pre-loaded SR vesicles was greatly increased by oxidative stress and this effect could be only partially prevented (ca 20%) by addition of BHT or DTT. Trifluoperazine (which specifically binds to the Ca2+-ATPase, causing conformational changes in the enzyme) fully protected the ATPase activity against oxidative damage. These results suggest that the alterations in function observed upon oxidation of SRV are mainly due to direct effects on the Ca2+-ATPase. Electrophoretic analysis of oxidized Ca2+-ATPase revealed a decrease in intensity of the silver-stained 110 kDa Ca2+-ATPase band and the appearance of low molecular weight peptides (MW < 100 kDa) and high molecular weight protein aggregates. Presence of DTT during oxidation prevented the appearance of protein aggregates and caused a simultaneous increase in the amount of low molecular weight peptides. We propose that impairment of function of the Ca2+-pump may be related to aminoacid oxidation and fragmentation of the protein.Abbreviations AcP acetylphosphate - BHT butylhydroxytoluene - DTT dithiothreitol - Hepes 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid - SDS sodium dodecyl sulfate - SDS-PAGE polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate - SR sarcoplasmic reticulum - SRV sarcoplasmic reticulum vesicles - TBA thiobarbituric acid - TBARS thiobarbituric acid-reactive substances - TFP trifluoperazine  相似文献   

9.
We have examined the effect of the Ca2+ (Mg2+)-ATPase inhibitors thapsigargin (TG) and vanadate on ATP-dependent 45Ca2+ uptake into IP3-sensitive Ca2+ pools in isolated microsomes from rat pancreatic acinar cells. The inhibitory effect of TG was biphasic. About 40–50% of total Ca2+ uptake was inhibited by TG up to 10 nm (apparent Ki4.2 nm, Ca2+ pool I). An additional increase of inhibition up to 85–90% of total Ca2+ uptake could be achieved at 15 to 20 nm of TG (apparent Ki12.1 nm, Ca2+ pool II). The rest was due to TG-insensitive contaminating plasma membranes and could be inhibited by vanadate (apparent Ki10 m). In the absence of TG, increasing concentrations of vanadate also showed two phases of inhibition of microsomal Ca2+ uptake. About 30–40% of total Ca2+ uptake was inhibited by 100 m of vanadate (apparent Ki18 m, Ca2+ pool II). The remaining 60–70% could be inhibited either by vanadate at concentrations up to 1 mm (apparent Ki300 m) or by TG up to 10 nm (Ca2+ pool I). The amount of IP3-induced Ca2+ release was constant at 25% over a wide range of Ca2+ filling. About 10–20% remained unreleasable by IP3. Reduction of IP3 releasable Ca2+ in the presence of inhibitors showed similar dose-response curves as Ca2+ uptake (apparent Ki 3.0 nm for IP3-induced Ca2+ release as compared to 4.2 nm for Ca2+ uptake at TG up to 10 nm) indicating that the highly TG-sensitive Ca2+ pump fills the IP3-sensitive Ca2+ pool I. At TG concentrations >10 nm which blocked Ca2+ pool II the apparent Ki values were 11.3 and 12.1 nm, respectively. For inhibition by vanadate up to 100 m the apparent Ki values were 18 m for Ca2+ uptake and 7 m for Ca2+ release (Ca2+ pool II). At vanadate concentrations up to 1 mm the apparent Ki values were 300 and 200 m, respectively (Ca2+ pool I). Both Ca2+ pools I and II also showed different sensitivities to IP3. Dose-response curves for IP3 in the absence of inhibitors (control) showed an apparent Km value for IP3 at 0.6 m. In the presence of TG (inhibition of Ca2+ pool I) the curve was shifted to the left with an apparent Km for IP3 at 0.08 m. In the presence of vanadate (inhibition of Ca2+ pool II), the apparent Km for IP3 was 2.1 m. These data allow the conclusion that there are at least three different Ca2+ uptake mechanisms present in pancreatic acinar cells: TG- and IP3 insensitive but highly vanadate-sensitive Ca2+ uptake occurs into membrane vesicles derived from plasma membranes. Two Ca2+ pools with different TG-, vanadate- and IP3-sensitivities are most likely located in the endoplasmic reticulum at different cell sites, which could have functional implications for hormonal stimulation of pancreatic acinar cells.This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 246. The authors wish to thank Dr. KlausDieter Preuß for valuable discussions and Mrs. Gabriele Mörschbächer for excellent secretarial help.  相似文献   

10.
A dinuclear copper(II) complex [Cu2(PD)(DPP)2](ClO4)2 (1) incorporating a constrained binucleating hexadenate ligand, PD (1,3-bis{bis[(2-pyridyl)ethyl]amino}benzene), and coligand, DPP (diphenylphosphate) was synthesized and characterized, with a specific outlook towards evaluating spectroscopic and H2O2 reactivity relevant to the active-sites of noncoupled dinuclear copper enzymes, DβM and PHM. In solution, complex 1 exhibits a broad 1H NMR in the range −25 to +60 ppm and has a solution magnetic moment (μ) of ∼2.0 B.M./Cu(II), typical of a noninteracting dicopper(II) center. The room temperature H2O2 reactivity of 1 monitored by UV-Vis spectroscopy reveals the formation of a copper(II)-dioxygen intermediate 1a, which in turn leading to a arene ligand hydroxylation (PD-O) and thus provide a new doubly-bridged dicopper(II) complex, [Cu2(PD-O)(DPP)](ClO4)2 (2). The dioxygen intermediate produces OPPh3 on treatment with PPh3 revealing it is an electrophilic hydroperoxide oxidant. Solution magnetic moment of 1.61 B.M./Cu(II) indicates the product complex 2 is a moderately interacting dicopper(II) center and its 1H NMR spans between −20 and +180 ppm. A comparison of the optical absorption features of complex 1a with related dinuclear hydroperoxo-copper(II) complexes is discussed.  相似文献   

11.
Summary In this paper we describe current fluctuations in the mammalian epithelium, rabbit descending colon. Pieces of isolated colon epithelium bathed in Na+ or K+ Ringer's solutions were studied under short-circuit conditions with the current noise spectra recorded over the range of 1–200 Hz. When the epithelium was bathed on both sides with Na+ Ringer's solution (the mucosal solution contained 50 m amiloride), no Lorentzian components were found in the power spectrum. After imposition of a potassium gradient across the epithelium by replacement of the mucosal solution by K+ Ringer's (containing 50 m amiloride), a Lorentzian component appeared with an average corner frequency,f c=15.6±0.91 Hz and a mean plateau valueS o=(7.04±2.94)×10–20 A2 sec/cm2. The Lorentzian component was enhanced by voltage clamping the colon in a direction favorable for K+ entry across the apical membrane. Elimination of the K+ gradient by bathing the colon on both sides with K+ Ringer's solutions abolished the noise signal. The Lorentzian component was also depressed by mucosal addition of Cs+ or tetraethylammonium (TEA) and by serosal addition of Ba2+. The one-sided action of these K+ channel blockers suggests a cellular location for the fluctuating channels. Addition of nystatin to the mucosal solution abolished the Lorentzian component. Serosal nystatin did not affect the Lorentzian noise. This finding indicates an apical membrane location for the fluctuating channels. The data were similar in some respects to K+ channel fluctuations recorded from the apical membranes of amphibian epithelia such as the frog skin and toad gallbladder. The results are relevant to recent reports concerning transcellular potassium secretion in the colon and indicate that the colon possesses spontaneously fluctuating potassium channels in its apical membranes in parallel to the Na+ transport pathway.  相似文献   

12.
Proton-dependent, ethylisopropylamiloride (EIPA)-sensitive Na+ uptake (Na+/H+ antiporter) studies were performed to examine if saliva, and ionophores which alter cellular electrolyte balance, could influence the activity of the cheek cell Na+/H+ antiporter. Using the standard conditions of 1 mmol/1 Na+, and a 65:1 (inside:outside) proton gradient in the assay, the uniport ionophores valinomycin (K+) and gramicidin (Na+) increased EIPA-sensitive Na+ uptake by 177% (p < 0.01) and 227% (p < 0.01), respectively. The dual antiporter ionophore nigericin (K+-H+) increased EIPA-sensitive Na+ uptake by 654% (p < 0.01), with maximal Na+ uptake achieved by 1 min and at an ionophore concentration of 50 mol/l, with an EC 50 value 6.4 mol/l. Preincubation of cheek cells with saliva or the low molecular weight (MW) components of saliva (saliva activating factors, SAF) for 2 h at 37°C, also significantly stimulated EIPA-sensitive Na+ uptake. This stimulation could be mimicked by pre-incubation with 25 mmol/l KCl or K+-phosphate buffer. Pre-incubating cheek cells with SAF and the inclusion of 20 mol/1 nigericin in the assay, produced maximum EIPA-sensitive Na+ uptake. After pre-incubation with water, 25 mmol/1 K+-phosphate or SAF, with nigericin in all assays, the initial rate of proton-gradient dependent, EIPA-sensitive Na+ uptake was saturable with respect to external Na+ with Km values of 0.9, 1.7, and 1.8 mmol/l, and V max values of 13.4, 25.8, and 31.1 nmol/mg protein/30 sec, respectively. With 20 mol/1 nigericin in the assay, Na+ uptake was inhibited by either increasing the [K+]o in the assay, with an ID 50 of 3 mmol/l. These results indicate that nigericin can facilitate K+ i exchange for H+ o and the attending re-acidification of the cheek cell amplifies IINa+ uptake via the Na+/H+ antiporter. The degree of stimulation of proton-dependent, EIPA-sensitive Na+ uptake is therefore dependent, in part, on the intracellular K+ i.  相似文献   

13.
The preparation and structural characterization of a new copper(II) complex of the polyether ionophorous antibiotic sodium monensin A (MonNa) are described. Sodium monensin A binds Cu(II) to produce a heterometallic complex of composition [Cu(MonNa)2Cl2]·H2O, 1. The crystallographic data of 1 show that the complex crystallizes in monoclinic space group C2 with Cu(II) ion adopting a distorted square-planar geometry. Copper(II) coordinates two anionic sodium monensin ligands and two chloride anions producing a neutral compound. The sodium ion remains in the inner cavity of the ligand retaining its sixfold coordination with oxygen atoms. Replacement of crystallization water by acetonitrile is observed in the crystal structure of the complex 1. Copper(I) salt of the methyl ester of MonNa, 2, was identified by X-ray crystallography as a side product of the reaction of MonNa with Cu(II). Compound 2, [Me-MonNa][H-MonNa][CuCl2]Cl, crystallizes in monoclinic space group C2 with the same coordination pattern of the sodium cation but contains a chlorocuprate(I) counter [CuCl2], which is linear and not coordinated by sodium monensin A. The antibacterial and antioxidant properties as two independent activities of 1 were studied. Compound 1 is effective against aerobic Gram(+)-microorganisms Bacillus subtilis, Bacillus mycoides and Sarcina lutea. Complex 1 shows SOD-like activity comparable with that of the copper(II) ion.  相似文献   

14.
The regulatory role of Ca2+-stimulated adenosine 5-triphosphatase (Ca2+-ATPase) in Ca2+ transport system of rat liver nuclei was investigated. Ca2+ uptake and release were determined with a Ca2+ electrode. Ca2+-ATPase activity was calculated by subtracting Mg2+-ATPase activity from (Ca2+–Mg2+)-ATPase activity. The release of Ca2+ from the Ca2+-loaded nuclei was evoked progressively after Ca2+ uptake with 1.0 mM ATP addition, while it was only slightly in the case of 2.0 mM ATP addition, indicating that the consumption of ATP causes a leak of Ca2+ from the Ca2+-loaded nuclei. The presence of N-ethylmaleimide (NEM; 0.1 mM) caused an inhibition of nuclear Ca2+ uptake and induced a promotion of Ca2+ release from the Ca2+-loaded nuclei. NEM (0.1 and 0.2 mM) markedly inhibited nuclear Ca2+-ATPase activity. This inhibition was completely blocked by the presence of dithiothreitol (DTT; 0.1 and 0.5 mM). Also, DTT inhibited the effect of NEM (0.1 mM) on nuclear Ca2+ uptake and release. Meanwhile, verapamil and diltiazem (10 M), a blocker of Ca2+ channels, did not prevent the NAD+ (1.0 and 2.0 mM), zinc sulfate (1.0 and 2.5 M) and arachidonic acid (10 M)-induced increase in nuclear Ca2+ release, suggesting that Ca2+ channels do not involve on Ca2+ release from the nuclei. These results indicates that an inhibition of nuclear Ca2+-ATPase activity causes the decrease in nuclear Ca2+ uptake and the release of Ca2+ from the Ca2+-loaded nuclei. The present finding suggests that Ca2+-ATPase plays a critical role in the regulatory mechanism of Ca2+ uptake and release in rat liver nuclei.  相似文献   

15.
Summary Activators of protein kinase C (PKC) stimulate Na transport (J Na) across frog skin. We have examined the effect of Ca2+ on PKC stimulation ofJ Na. Both the phorbol ester 12-O-tetradecanoylglycerol (DiC8) were used as PKC activators. Blocking Ca2+ entry into the cytosol (either from external or internal stores) reduced the subsequent natriferic effect of the PKC activators. This negative interaction did not simply reflect saturation of activation of the apical Na+ channels, since the stimulations produced by blocking Ca2+ entry and adding cyclic AMP were simply additive.The Ca2+ dependence of the natriferic effect could have reflected either a direct action of cytosolic Ca2+ on PKC or an indirect action on the final receptor site (the Na+ channel). To distinguish between these possibilities, the TPA- and phospholipid-dependent kinase activity of broken-cell preparations was assayed. The kinase activity was not stimulated by physiological levels of Ca2+, and in fact was inhibited at millimolar concentrations of Ca2+.We conclude that the effects of Ca2+ on the natriferic response to PKC activators are indirect. Reducing cytosolic uptake of Ca2+ may have stimulated Na+ transport by a chemical modification of the apical channels observed in other tight epithelia. The usual stimulation of Na+ transport produced by PKC activators in frog skin may reflect the operation of a nonconventional form of PKC. This enzyme is Ca2+ independent and seems related to thenPKC or PKC observed in other systems.  相似文献   

16.
In the epithelium of rat distal colon the acetylcholine analogue carbachol induces a transient increase of short-circuit current (Isc) via stimulation of cellular K+ conductances. Inhibition of the turnover of inositol-1,4,5-trisphosphate (IP3) by LiCl significantly reduced both the amplitude and the duration of this response. When the apical membrane was permeabilized with nystatin, LiCl nearly abolished the carbachol-induced activation of basolateral K+ conductances. In contrast, in epithelia, in which the basolateral membrane was bypassed by a basolateral depolarization, carbachol induced a biphasic increase in the K+ current across the apical membrane consisting of an early component carried by charybdotoxin- and tetraethylammonium-sensitive K+ channels followed by a sustained plateau carried by channels insensitive against these blockers. Only the latter was sensitive against LiCl or inhibition of protein kinases. In contrast, the stimulation of the early apical K+ conductance by carbachol proved to be resistant against inhibition of phospholipase C or protein kinases. However, apical dichlorobenzamil, an inhibitor of Na+/Ca2+ exchangers, or a Ca2+-free mucosal buffer solution significantly reduced the early component of the carbachol-induced apical K+ current. The presence of an apically localized Na+/Ca2+-exchanger was proven immunohistochemically. Taken together these experiments reveal divergent regulatory mechanisms for the stimulation of apical Ca2+-dependent K+ channels in this secretory epithelium, part of them being activated by an inflow of Ca2+ across the apical membrane.
G. SchultheissEmail:
  相似文献   

17.
Summary The presence of a coupled Na+/Ca2+ exchange system has been demonstrated in plasma membrane vesicles from rat pancreatic acinar cells. Na+/Ca2+ exchange was investigated by measuring45Ca2+ uptake and45Ca2+ efflux in the presence of sodium gradients and at different electrical potential differences across the membrane (=) in the presence of sodium. Plasma membranes were prepared by a MgCl2 precipitation method and characterized by marker enzyme distribution. When compared to the total homogenate, the typical marker for the plasma membrane, (Na++K+)-ATPase was enriched by 23-fold. Markers for the endoplasmic reticulum, such as RNA and NADPH cytochromec reductase, as well as for mitochondria, the cytochromec oxidase, were reduced by twofold, threefold and 10-fold, respectively. For the Na+/Ca2+ countertransport system, the Ca2+ uptake after 1 min of incubation was half-maximal at 0.62 mol/liter Ca2+ and at 20 mmol/liter Na+ concentration and maximal at 10 mol/liter Ca2+ and 150 mmol/liter Na+ concentration, respecitively. When Na+ was replaced by Li+, maximal Ca2+ uptake was 75% as compared to that in the presence of Na+. Amiloride (10–3 mol/liter) at 200 mmol/liter Na+ did not inhibit Na+/Ca2+ countertransport, whereas at low Na+ concentration (25 mmol/liter) amiloride exhibited dose-dependent inhibition to be 62% at 10–2 mol/liter. CFCCP (10–5 mol/liter) did not influence Na+/Ca2+ countertransport. Monensin inhibited dose dependently; at a concentration of 5×10–6 mol/liter inhibition was 80%. A SCN or K+ diffusion potential (=), being positive at the vesicle inside, stimulated calcium uptake in the presence of sodium suggesting that Na+/Ca2+ countertransport operates electrogenically, i.e. with a stoichiometry higher than 2 Na+ for 1 Ca2+. In the absence of Na+, did not promote Ca2+ uptake. We conclude that in addition to ATP-dependent Ca2+ outward transport as characterized previously (E. Bayerdörffer, L. Eckhardt, W. Haase & 1. Schulz, 1985,J. Membrane Biol. 84:45–60) the Na+/Ca2+ countertransport system, as characterized in this study, represents a second transport system for the extrusion of calcium from the cell. Furthermore, the high affinity for calcium suggests that this system might participate in the regulation of the cytosolic free Ca2+ level.  相似文献   

18.
Two oxime-functionalized diazamesocyclic derivates, namely, N,N′-bis(acetophenoneoxime)-1,4-diazacycloheptane (H2L1) and N,N′-bis(acetophenonoxime)-1,5-diazacyclooctane (H2L2), have been prepared and characterized. Both ligands (obtained in the hydrochloride form) can form stable metal complexes with CuII and NiII salts, the crystal structures of which were determined by X-ray diffraction technique. The reactions of H2L1 with Cu(ClO4)2 and Ni(ClO4)2 afford a penta-coordinated mononuclear complex [Cu(H2L1)Cl] · ClO4 (1) and a four-coordinated monomeric [Ni(HL1)] · ClO4 (2), in which the ligand is monodeprotonated. The ligand H2L2 also forms a quite similar mononuclear [Ni(HL2)] · ClO4 complex with Ni(ClO4)2, according to our previous work. However, reactions of different CuII salts [Cu(ClO4)2, CuCl2 and Cu(NO3)2 for 3, and CuSO4 for 4] with H2L2 in the presence of NaClO4 yield two unusual mono-μ-Cl dinuclear CuII complexes [Cu2(HL2)2Cl] · (ClO4) (3), and [Cu2(H2L2)(HL2)Cl] · (ClO4)2 · (H2O)(4). These results indicate that the resultant CuII complexes (1, 3 and 4) are sensitive to the backbones of diazamesocycles and even auxiliary anions.  相似文献   

19.
Rolf A. Løvstad 《Biometals》2002,15(4):351-355
Serum albumin can specifically bind one Cu(II)-ion, and is proposed to function as a copper transport protein in vivo. Cu(II)-albumin is rapidly reduced by ascorbate. A second order rate constant of 0.54 mM–1 min–1 was estimated for the reaction. The oxidation process is catalytic, the Cu(I)-albumin molecule being reoxidized by molecular oxygen. The reaction was found to follow Michaelis-Menten kinetics, characterized by an apparent Km-value of 0.89 mM, and a catalytic constant of 0.066 M O2/min. An apparent inhibition of oxygen uptake was obtained with catalase (but not with superoxide dismutase), suggesting the formation of H2O2 in the system. Wilson's disease patients usually have increased amounts of non-ceruloplasmin copper in plasma. The low level of plasma ascorbate observed in such patients could possibly be due, at least in part, to an oxidation by Cu(II)-albumin.  相似文献   

20.
Uptake ofl-[35S]cysteic acid (L-CA) in rat synaptic membrane vesicles was investigated. Preincubation with either 10 mMl-glutamic acid (L-Glu), 25 mM L-CA, 10 mMdl-homocysteic acid, or 25 mMdl-2-amino-4-phosphonobutyrate on membrane vesicles enhanced L-[35S]CA and L-[3H]Glu uptake. Na+ (5 mM) and omission of Cl from the assay medium decreased L-[35S]CA uptake into both 10 mM L-Glu-loaded and non-loaded membrane vesicles. The anion transport blockers, 4-acetamide-4-isothiocyano-2,2-disulfonic acid stibene (SITS) and 4,4-diisothiocyano-2,2-disulfonic acid stilbene (DIDS), inhibited L-[35S]CA uptake in a dose-dependent manner. The maximal uptake rate for L-[35S]CA was decreased by 50 M SITS, while the apparent Km value of L-CA was not changed. SITS increased the EC50 value of Cl for L-[35S]CA uptake from 5 mM to 10 mM with reduction of the maximal effect. These results suggested that L-[35S]CA uptake into synaptic membrane vesicles was mediated by a SITS-sensitive hetero-exchange transport with non-labeled substrates.Abbreviations SITS 4-Acetamide-4-isothiocyano-2,2-disulfonic acid stilbene - DIDS 4,4-Diisothiocyano-2,2-disulfonic acid stilbene - CA Cysteic acid - APB 2-Amino-4-phosphonobutyrate - CSA Cysteine sulfinic acid - EGTA Ethyleneglycol bis(aminoethylether) tetraacetate - GABA -Aminobutyric acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号