首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ge Y  Bruno M  Wallace K  Winnik W  Prasad RY 《Proteomics》2011,11(12):2406-2422
Oxidative stress is known to play important roles in engineered nanomaterial‐induced cellular toxicity. However, the proteins and signaling pathways associated with the engineered nanomaterial‐mediated oxidative stress and toxicity are largely unknown. To identify these toxicity pathways and networks that are associated with exposure to engineered nanomaterials, an integrated proteomic study was conducted using human bronchial epithelial cells, BEAS‐2B and nanoscale titanium dioxide. Utilizing 2‐DE and MS, we identified 46 proteins that were altered at protein expression levels. The protein changes detected by 2‐DE/MS were verified by functional protein assays. These identified proteins include some key proteins involved in cellular stress response, metabolism, adhesion, cytoskeletal dynamics, cell growth, cell death, and cell signaling. The differentially expressed proteins were mapped using Ingenuity Pathway Analyses? canonical pathways and Ingenuity Pathway Analyses tox lists to create protein‐interacting networks and proteomic pathways. Twenty protein canonical pathways and tox lists were generated, and these pathways were compared to signaling pathways generated from genomic analyses of BEAS‐2B cells treated with titanium dioxide. There was a significant overlap in the specific pathways and lists generated from the proteomic and the genomic data. In addition, we also analyzed the phosphorylation profiles of protein kinases in titanium dioxide‐treated BEAS‐2B cells for a better understanding of upstream signaling pathways in response to the titanium dioxide treatment and the induced oxidative stress. In summary, the present study provides the first protein‐interacting network maps and novel insights into the biological responses and potential toxicity and detoxification pathways of titanium dioxide.  相似文献   

2.
3.
Suberonylanilide hydroxamic acid (SAHA) is an orally administered histone deacetylase inhibitor (HDACI) that has shown significant antitumour activity in a variety of tumour cells. To identify proteins involved in its antitumour activity, we utilized a proteomic approach to reveal protein expression changes in the human cervical cancer cell line HeLa following SAHA treatment. Protein expression profiles were analysed by 2-dimensional polyacrylamide gel electrophoresis (2-DE) and protein identification was performed on a MALDI-Q-TOF MS/MS instrument. As a result, a total of nine differentially expressed proteins were visualized by 2-DE and Coomassie brilliant blue (CBB) staining. Further, all the changed proteins were positively identified via mass spectrometry (MS)/MS analysis. Of these, PGAM1 was significantly downregulated in HeLa cells after treatment with SAHA. Moreover, PGAM1 has been proven to be downregulated in another cervical cancer cell line (CaSki) by western blot analysis. Together, using proteomic tools, we identified several differentially expressed proteins that underwent SAHA-induced apoptosis. These changed proteins may provide some clues to a better understanding of the molecular mechanisms underlying SAHA-induced apoptosis in cervical cancer.  相似文献   

4.
Proteomic analysis of progressive factors in uterine cervical cancer   总被引:4,自引:0,他引:4  
Choi YP  Kang S  Hong S  Xie X  Cho NH 《Proteomics》2005,5(6):1481-1493
Human papillomavirus (HPV) infections play a crucial role in the progress of cervical cancer. The high-risk HPV types are frequently associated with the development of malignant lesions. Some of the latest studies have demonstrated that the high-risk HPV 16 and 18 are predominantly detected in the more aggressive cancers. In the present study, we aimed to establish the proteomic profiles and characterization of the tumor related proteins by using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). For proteomic analysis, patients infected by HPV 16 or 18 were included in this study. We compared nuclear protein and cytoplasmic protein, separately by using the subcellular fraction. Differential protein spots between cervical cancer with high-risk HPV, HPV 16 or HPV 18, and HaCaT cell lines were characterized by 2-DE. Those proteins analyzed by peptide mass fingerprinting based on MALDI-TOF MS and database searching were the products of oncogenes or proto-oncogenes, and the others were involved in the regulation of cell cycle, for general genomic stability, telomerase activation, and cell immortalization. However, there was no difference in protein characterization for cervical cancer between HPV 16 and HPV 18 infection. Nonetheless, these data are valuable for the mass identification of differentially expressed proteins involved in human uterine cervical cancer. Moreover, the data has enormous value for establishing the human uterine cervical cancer proteome database that can be used in screening a molecular marker for the further study of human uterine cervical cancer, and also for studying any correlation among the cancers induced by HPV.  相似文献   

5.
Lack of genomic sequence data and the relatively high cost of tandem mass spectrometry have hampered proteomic investigations into helminths, such as resolving the mechanism underpinning globally reported anthelmintic resistance. Whilst detailed mechanisms of resistance remain unknown for the majority of drug-parasite interactions, gene mutations and changes in gene and protein expression are proposed key aspects of resistance. Comparative proteomic analysis of drug-resistant and -susceptible nematodes may reveal protein profiles reflecting drug-related phenotypes. Using the gastro-intestinal nematode, Haemonchus contortus as case study, we report the application of freely available expressed sequence tag (EST) datasets to support proteomic studies in unsequenced nematodes. EST datasets were translated to theoretical protein sequences to generate a searchable database. In conjunction with matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF-MS), Peptide Mass Fingerprint (PMF) searching of databases enabled a cost-effective protein identification strategy. The effectiveness of this approach was verified in comparison with MS/MS de novo sequencing with searching of the same EST protein database and subsequent searches of the NCBInr protein database using the Basic Local Alignment Search Tool (BLAST) to provide protein annotation. Of 100 proteins from 2-DE gel spots, 62 were identified by MALDI-TOF-MS and PMF searching of the EST database. Twenty randomly selected spots were analysed by electrospray MS/MS and MASCOT Ion Searches of the same database. The resulting sequences were subjected to BLAST searches of the NCBI protein database to provide annotation of the proteins and confirm concordance in protein identity from both approaches. Further confirmation of protein identifications from the MS/MS data were obtained by de novo sequencing of peptides, followed by FASTS algorithm searches of the EST putative protein database. This study demonstrates the cost-effective use of available EST databases and inexpensive, accessible MALDI-TOF MS in conjunction with PMF for reliable protein identification in unsequenced organisms.  相似文献   

6.
Cry toxins produced by Bacillus thuringiensis bacteria are environmentally safe alternatives to control insect pests. They are pore-forming toxins that specifically affect cell permeability and cellular integrity of insect-midgut cells. In this work we analyzed the defensive response of Aedes aegypti larva to Cry11Aa toxin intoxication by proteomic and functional genomic analyses. Two dimensional differential in-gel electrophoresis (2D-DIGE) was utilized to analyze proteomic differences among A. aegypti larvae intoxicated with different doses of Cry11Aa toxin compared to a buffer treatment. Spots with significant differential expression (p<0.05) were then identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), revealing 18 up-regulated and seven down-regulated proteins. The most abundant subcategories of differentially expressed proteins were proteins involved in protein turnover and folding, energy production, and cytoskeleton maintenance. We selected three candidate proteins based on their differential expression as representatives of the different functional categories to perform gene silencing by RNA interference and analyze their functional role. The heat shock protein HSP90 was selected from the proteins involved in protein turnover and chaperones; actin, was selected as representative of the cytoskeleton protein group, and ATP synthase subunit beta was selected from the group of proteins involved in energy production. When we affected the expression of ATP synthase subunit beta and actin by silencing with RNAi the larvae became hypersensitive to toxin action. In addition, we found that mosquito larvae displayed a resistant phenotype when the heat shock protein was silenced. These results provide insight into the molecular components influencing the defense to Cry toxin intoxication and facilitate further studies on the roles of identified genes.  相似文献   

7.
8.
Aspartyl aminopeptidase (DAP), encoded by the DNPEP gene, is believed to be a cytosolic protein with high enzymatic activity in the neuroendocrine tissues. Bioinformatic analysis revealed that the genomic segment spanning the DNPEP gene is evolutionarily conserved from Caenorhabditis elegans to humans. In the present study, we sought to determine whether the expression of DAP is associated with its clustered genes when expressed in pancreatic islet cells. Using anti-DAP specific antibody in immunofluorescent stainings, we found that DAP was specifically expressed in islet alpha cells but not in exocrine acinar cells. Moreover, using electron microscopy, we found that DAP was associated with a lysosomal-like structure and secretory granules, suggesting that it plays an important role in post-translational processing and the secretion of hormones in islet cells. The identification and characterization of DNPEP syntenic genes confirm that conserved clustered genes can preferentially be expressed in the same signaling pathway.  相似文献   

9.
GPR40 gene expression in human pancreas and insulinoma   总被引:3,自引:0,他引:3  
To assess gene expression of a membrane-bound G-protein-coupled fatty acid receptor, GPR40, in the human pancreas and islet cell tumors obtained at surgery were analyzed. The mRNA level of the GPR40 gene in isolated pancreatic islets was approximately 20-fold higher than that in the pancreas, and the level was comparable to or rather higher than that of the sulfonylurea receptor 1 gene, which is known to be expressed abundantly in human pancreatic beta cells. A large amount of GPR40 mRNA was detected in tissue extracts from two cases of insulinoma, whereas the expression was undetectable in glucagonoma or gastrinoma. The present study demonstrates that GPR40 mRNA is expressed predominantly in pancreatic islets in humans and that GPR40 mRNA is expressed solely in human insulinoma among islet cell tumors. These results indicate that GPR40 is probably expressed in pancreatic beta cells in the human pancreas.  相似文献   

10.
11.
Yap WH  Khoo KS  Lim SH  Yeo CC  Lim YM 《Phytomedicine》2012,19(2):183-191
Maslinic acid, a natural pentacyclic triterpene has been shown to inhibit growth and induce apoptosis in some tumour cell lines. We studied the molecular response of Raji cells towards maslinic acid treatment. A proteomics approach was employed to identify the target proteins. Seventeen differentially expressed proteins including those involved in DNA replication, microtubule filament assembly, nucleo-cytoplasmic trafficking, cell signaling, energy metabolism and cytoskeletal organization were identified by MALDI TOF-TOF MS. The down-regulation of stathmin, Ran GTPase activating protein-1 (RanBP1), and microtubule associated protein RP/EB family member 1 (EB1) were confirmed by Western blotting. The study of the effect of maslinic acid on Raji cell cycle regulation showed that it induced a G1 cell cycle arrest. The differential proteomic changes in maslinic acid-treated Raji cells demonstrated that it also inhibited expression of dUTPase and stathmin which are known to induce early S and G2 cell cycle arrests. The mechanism of maslinic acid-induced cell cycle arrest may be mediated by inhibiting cyclin D1 expression and enhancing the levels of cell cycle-dependent kinase (CDK) inhibitor p21 protein. Maslinic acid suppressed nuclear factor-kappa B (NF-κB) activity which is known to stimulate expression of anti-apoptotic and cell cycle regulatory gene products. These results suggest that maslinic acid affects multiple signaling molecules and inhibits fundamental pathways regulating cell growth and survival in Raji cells.  相似文献   

12.
Large numbers of protein expression changes are usually observed in mouse models for neurodegenerative diseases, even when only a single gene was mutated in each case. To study the effect of gene dose alterations on the cellular proteome, we carried out a proteomic investigation on murine embryonic stem cells that either overexpressed individual genes or displayed aneuploidy over a genomic region encompassing 14 genes. The number of variant proteins detected per cell line ranged between 70 and 110, and did not correlate with the number of modified genes. In cell lines with single gene mutations, up and down-regulated proteins were always in balance in comparison to parental cell lines regarding number as well as concentration of differentially expressed proteins. In contrast, dose alteration of 14 genes resulted in an unequal number of up and down-regulated proteins, though the balance was kept at the level of protein concentration. We propose that the observed protein changes might partially be explained by a proteomic network response. Hence, we hypothesize the existence of a class of "balancer" proteins within the proteomic network, defined as proteins that buffer or cushion a system, and thus oppose multiple system disturbances. Through database queries and resilience analysis of the protein interaction network, we found that potential balancer proteins are of high cellular abundance, possess a low number of direct interaction partners, and show great allelic variation. Moreover, balancer proteins contribute more heavily to the network entropy, and thus are of high importance in terms of system resilience. We propose that the "elasticity" of the proteomic regulatory network mediated by balancer proteins may compensate for changes that occur under diseased conditions.  相似文献   

13.
In the present study, proteomic analysis was performed to discover combinational molecular targets for therapy and chemoresistance by comparing differential protein expression from Panc‐1 cells treated with FDA‐approved drugs such as sunitinib, imatinib mesylate, dasatinib, and PD184352. A total of 4041 proteins were identified in the combined data from all of the treatment groups by nano‐electrospray ultra‐performance LC and MS/MS analysis. Most of the proteins with significant changes are involved in apoptosis, cytoskeletal remodeling, and epithelial‐to‐mesenchymal transition. These processes are associated with increased chemoresistance and progression of pancreatic cancer. Among the differentially expressed proteins, heme oxygenase‐1 (HO‐1) was found in the sunitinib and imatinib mesylate treatment groups, which possibly acts as a specific target for synthetic lethality in combinational treatment. HO‐1 was found to play a key role in sensitizing the chemoresistant Panc‐1 cell line to drug therapy. Viability was significantly decreased in Panc‐1 cells cotreated with sunitinib and imatinib mesylate at low doses, compared to those treated with sunitinib or imatinib mesylate alone. The results suggest that induction of chemosensitization by manipulating specific molecular targets can potentiate synergistic chemotherapeutic effects at lower, better tolerated doses, and in turn reduce the toxicity of multidrug treatment of pancreatic cancer.  相似文献   

14.
15.
Aspartyl aminopeptidase (DAP), encoded by the DNPEP gene, is believed to be a cytosolic protein with high enzymatic activity in the neuroendocrine tissues. Bioinformatic analysis revealed that the genomic segment spanning the DNPEP gene is evolutionarily conserved from Caenorhabditis elegans to humans. In the present study, we sought to determine whether the expression of DAP is associated with its clustered genes when expressed in pancreatic islet cells. Using anti-DAP specific antibody in immunofluorescent stainings, we found that DAP was specifically expressed in islet alpha cells but not in exocrine acinar cells. Moreover, using electron microscopy, we found that DAP was associated with a lysosomal-like structure and secretory granules, suggesting that it plays an important role in post-translational processing and the secretion of hormones in islet cells. The identification and characterization of DNPEP syntenic genes confirm that conserved clustered genes can preferentially be expressed in the same signaling pathway.  相似文献   

16.
This study was designed to identify the cell surface protein markers that can differentiate between chronic myeloid leukemia (CML) and acute promyelocytic leukemia cells (APL). The differentially expressed plasma membrane proteins were analyzed between CML cell line (K562) and APL cell line (NB4) using the comparative proteomic approach. The cell membrane proteins were enriched by labeling with a membrane-impermeable biotinylation reagent, sulfo-NHS-SS-Biotin, and subjected to liquid chromatography tandem mass spectrometry (LC-MS/MS). By comparative proteomic analysis of K562 and NB4 cells, we identified 25 membrane and 14 membrane-associated proteins. The result of LC-MS/MS combined with chemical tagging method was validated by confirming the expression and localization of one of the differentially expressed plasma membrane proteins, CD43, by FACS and confocal microscopy. Our results indicate that CD43 could be a potential candidate for differentiating CML from APL.  相似文献   

17.
Cytotoxic gold compounds hold today great promise as new pharmacological agents for treatment of human ovarian carcinoma; yet, their mode of action is still largely unknown. To shed light on the underlying molecular mechanisms, we performed 2D-DIGE analysis to identify differential protein expression in a cisplatin-sensitive human ovarian cancer cell line (A2780/S) following treatment with two representative gold(iii) complexes that are known to be potent antiproliferative agents, namely AuL12 and Au(2)Phen. Software analysis using DeCyder was performed and few differentially expressed protein spots were visualized between the three examined settings after 24 h exposure to the cytotoxic compounds, implying that cellular damage at least during the early phases of exposure is quite limited and selective, reflecting the attempts of the cell to repair damage and to survive the insult. The potential of novel proteomic methods to disclose mechanistic details of cytotoxic metallodrugs is herein further highlighted. Different patterns of proteomic changes were highlighted for the two metallodrugs with only a few perturbed protein spots in common. Using MALDI-TOF MS and ESI-Ion trap MS/MS, several differentially expressed proteins were identified. Two of these were validated by western blotting: Ubiquilin-1, responsible for inhibiting degradation of proteins such as p53 and NAP1L1, a candidate marker identified in primary tumors. Ubiquilin-1 resulted over-expressed following both treatments and NAP1L1 was down-expressed in AuL12-treated cells in comparison with control and with Au(2)Phen-treated cells. In conclusion, we performed a comprehensive analysis of proteins regulated by AuL12 and Au(2)Phen, providing a useful insight into their mechanisms of action.  相似文献   

18.
19.
Hoxa-5 is a homeobox gene that is highly expressed in the developing mouse lung. However, little is known about the molecular mechanisms controlling expression. We characterized the ontogeny of Hoxa-5 gene and protein expressions during lung development and then studied the cell-specific effects of retinoic acid (RA) on Hoxa-5 mRNA in fetal lung fibroblasts and MLE-12 mouse lung epithelial cells. Strong but constant Hoxa-5 gene and protein expressions were detected from mouse lung on embryonic day 13.5 to postnatal day 2. At baseline, the gene was strongly expressed in the fibroblasts of day 17.5 fetal mouse lungs. A very weak but reproducible expression was present in the MLE-12 cells. RA stimulated gene expression in both cell types in a time- and dose-dependent manner. Peak expression occurred much later in the MLE-12 cells compared with that in fibroblasts. Cycloheximide and actinomycin D treatment studies suggested that the differences in RA effect on each cell type may involve the presence of a repressor that can be overcome by RA.  相似文献   

20.
Mammalian cell cultures used for biopharmaceutical production undergo various dynamic biological changes over time, including the transition of cells from an exponential growth phase to a stationary phase during cell culture. To better understand the dynamic aspects of cell culture, a quantitative proteomics approach was used to identify dynamic trends in protein expression over the course of a Chinese hamster ovary (CHO) cell culture for the production of a recombinant monoclonal antibody and overexpressing the antiapoptotic gene Bcl-xl. Samples were analyzed using a method incorporating iTRAQ labeling, two-dimensional LC/MS, and linear regression calculations to identify significant dynamic trends in protein abundance. Using this approach, 59 proteins were identified with significant temporal changes in expression. Pathway analysis tools were used to identify a putative network of proteins associated with cell growth and apoptosis. Among the differentially expressed proteins were molecular chaperones and isomerases, such as GRP78 and PDI, and reported cell growth markers MCM2 and MCM5. In addition, two proteins with growth-regulating properties, transglutaminase-2 and clusterin, were identified. These proteins are associated with tumor proliferation and apoptosis and were observed to be expressed at relatively high levels during stationary phase, which was confirmed by western blotting. The proteomic methodology described here provides a dynamic view of protein expression throughout a CHO fed-batch cell culture, which may be useful for further elucidating the biological processes driving mammalian cell culture performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号