首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
着丝粒结构与功能研究的新进展   总被引:1,自引:0,他引:1  
丁戈  姚南  吴琼  刘恒  郑国锠 《植物学通报》2008,25(2):149-160
着丝粒是真核生物染色体的显著特征。在细胞有丝分裂和减数分裂中,着丝粒作为保证染色体正常分裂并分离到子细胞的结构和功能元件,参与了同源染色体配对、姐妹染色单体黏合、分离及分裂后期启动的调控等。本文对近年来着丝粒结构和功能研究的新进展进行了概述。  相似文献   

2.
Dai JG  Zheng HH  Zhang P 《遗传》2011,33(6):576-584
染色体移动复合物主要由蛋白激酶Aurora B、内层着丝粒蛋白、存活蛋白及蛋白Borealin组成。它在细胞分裂的不同阶段,能及时精确地定位到相关部位并作用于相应底物;具有调节染色质组蛋白磷酸化,控制姐妹染色单体的粘着、分离,参与分裂纺锤体组装及其对染色体的捕捉,纠正动粒与微管间不适当附着,将染色体精确分配到子细胞及促进胞浆分离等重要功能。文章简要介绍了染色体移动复合物的结构成分,在染色体臂部、内层着丝粒及纺锤体中区的定位过程,及其定位在不同部位的相应功能。  相似文献   

3.
着丝粒核小体结构研究进展   总被引:1,自引:0,他引:1  
着丝粒是构成真核生物染色体的必需元件。在细胞有丝分裂或减数分裂时,微管通过动粒与染色体着丝粒连接,参与细胞分裂的染色体分离与分配过程,使染色体平均分配到子细胞中。构成着丝粒的基本单位是着丝粒特异的核小体,与常规核小体不同的是着丝粒核小体中的组蛋白H3被其变种——着丝粒组蛋白H3所替换。最近几年,着丝粒核小体的结构成为细胞生物学研究的热点之一。该文综述了最近在多种真核生物研究中,通过体外和体内实验,提出的着丝粒核小体结构的八聚体、六聚体、同型四聚体以及半八聚体模型,并对着丝粒核小体结构的动态模型与功能的关系进行了探讨。  相似文献   

4.
着丝粒是染色体的重要结构,在真核生物的细胞分裂中负责染色体的分裂分离。近年来对着丝粒的研究已经成为遗传学的一个热点。本文对着丝粒DNA的重复序列、着丝粒区域的基因及着丝粒的形成机制等作了简要的介绍。  相似文献   

5.
《遗传》2011,(5):430
与有丝分裂不同,减数分裂染色体复制一次,细胞分裂两次。这种质的差异与染色体臂上及着丝粒处黏着蛋白的分步消失有关。染色体臂上黏着蛋白在减数第一次分裂消失是保证同源染色体分离的前提;而着丝粒处黏着蛋白的维持是保证姊妹染色单体在减数第二次分裂才相互分开。shugoshin是一个着丝粒定位的蛋白,其主要功能是保护姊妹染色单体着丝粒区域黏着蛋白在减数第一次分裂过程中不被降解。shugoshin蛋白在真核生物中具有较高的保守性,上世纪90年代在果蝇中首先发现了shugoshin蛋白(Mei-S332),然而其功能在不同物种中有了进一步分化。  相似文献   

6.
着丝粒(centromere)是真核生物染色体的重要功能结构。在细胞有丝分裂和减数分裂过程中,着丝粒通过招募动粒蛋白行使功能,保障染色体正确分离和传递。真核生物中,含有着丝粒特异组蛋白的CenH3区域被定义为功能着丝粒区,即真正意义上的着丝粒。近年来,借助染色质免疫沉淀技术,人们对功能着丝粒DNA开展了深入研究,揭示其组成、结构及演化特征,并发现功能着丝粒区存在具有转录活性的基因,且部分基因具有重要生物学功能。由于存在大量重复DNA,着丝粒演化之谜一直未能完全揭示。对植物功能着丝粒DNA序列研究进展进行了概述,并重点阐述了着丝粒重复DNA研究的新方法和新进展,以期为深入开展相关研究提供借鉴。  相似文献   

7.
本文首次报道虫草蝠蛾(鳞翅目,蝙蝠蛾科,蝠蛾属)的有丝分裂染色体核型。应用醋酸分离和热干燥技术,研究了云南的两种虫草蝠蛾Hepialus zhayuensis Chu et Wang和Hepialus sp.的有丝分裂染色体,它们的染色体数目为2n=64。在有丝分裂的早中期染色体上清晰地呈现出散漫着丝粒。然而,分裂中期和较晚的中期阶段,每条染色体都具显著的初级着丝粒(即主缢痕)。它们的雄性中期核型中都有一对典型的异形性染色体,X染色体着色稍淡,且都具中或亚中着丝粒;Y染色体比X染色体长,染色很深。 在雄性的分裂间期细胞中,观察到异固缩性染色质体,此异固缩体是Y染色体。  相似文献   

8.
本文首次报道虫草蝙蝠蛾(鳞翅目,蝙蝠蛾科,蝙蛾属)的有丝分裂染色体核型。应用醋酸分离和热干燥技术,研究了云南的两种虫草蝙蝠蛾Hepialus zhayuensis Chu er Wang Hepialus sp.的有丝分裂染色体, 他们的染色体数目为2n=64。在有丝分裂的早中期染色体上清晰地呈现出散漫着丝粒。然而,分裂中期和较晚的中期阶段,每条染色体裁都具有显著的初级着丝粒(即主缢痕)。他们的雄性中期核型都有一对典型的异型性染色体,X染色体着色稍淡,且都具中或亚中着丝粒;Y染色体比X染色体长,染色很深。 在胸性的分裂间期细胞中,观察到异固缩性染色质体,此异固缩体是Y染色体。  相似文献   

9.
植物着丝粒是染色体重要结构域,介导动粒装配。不同物种间着丝粒重复序列快速趋异进化,着丝粒功能保守,确保有丝分裂和减数分裂过程中染色体正确分离和准确传递。伴随染色质免疫共沉淀技术(Chromatin immunoprecipitation, ChIP)、ChIP 与高密度芯片相结合技术(ChIP-chip)、ChIP 与高通量测序相结合技术(ChIP-seq)的应用,植物着丝粒研究获得里程碑式进展:某些模式植物着丝粒DNA 序列、蛋白质结构、功能获得大量新认识;着丝粒基本蛋白质组蛋白H3 被用来界定着丝粒大小和边界;某些非着丝粒区域被激活为新着丝粒,在世代传递中保持稳定性。本文对植物着丝粒结构、功能、进化研究进行了综述,并探讨了植物着丝粒研究存在的问题。  相似文献   

10.
着丝粒是真核染色体上的重要细胞器,是真核染色体作为基因载体行使其遗传功能的关键结构.着丝粒DNA首先是从酵母中分离克隆并被用以构建酵母人工染色体.鉴于真核有丝分裂机制研究和构建高等动物人工染色体研究的需要,从分离和检定过的小鼠着丝粒DNA库中筛选出了6#着丝粒DNA(SFADNA),并用荧光原位杂交法(FISH)对其进行了在染色体上的定位检定.用缺口平移法和PCR法分别标记了SFA DNA和SFA DNA中的小鼠寡份卫星DNA作为探针,分别与小鼠腹水癌细胞和小鼠L929细胞进行原位杂交;并用荧光抗体显示杂交信号的位置.结果,SFA DNA在两种细胞的中期染色体上的杂交信号都位于亚末端的初级缢痕处,表现为单一粗大的斑块.寡份卫星DNA在两种细胞的中期染色体上的杂交信号亦都位于亚末端的初级缢痕处,但极大多数的斑点均表现为成对的细小斑点.初级缢痕正是染色体着丝粒所在的特征性部位.故以上结果说明定位于该部位的克隆的6#SFA DNA,和其中的小鼠寡份卫星DNA都来源于小鼠着丝粒DNA.  相似文献   

11.
Homology-directed repair (HDR) is essential to limit mutagenesis, chromosomal instability (CIN) and tumorigenesis. We have characterized the consequences of HDR deficiency on anaphase, using markers for incomplete chromosome separation: DAPI-bridges and Ultra-fine bridges (UFBs). We show that multiple HDR factors (Rad51, Brca2 and Brca1) are critical for complete chromosome separation during anaphase, while another chromosome break repair pathway, non-homologous end joining, does not affect chromosome segregation. We then examined the consequences of mild versus severe HDR disruption, using two different dominant-negative alleles of the strand exchange factor, Rad51. We show that mild HDR disruption is viable, but causes incomplete chromosome separation, as detected by DAPI-bridges and UFBs, while severe HDR disruption additionally results in multipolar anaphases and loss of clonogenic survival. We suggest that mild HDR disruption favors the proliferation of cells that are prone to CIN due to defective chromosome separation during anaphase, whereas, severe HDR deficiency leads to multipolar divisions that are prohibitive for cell proliferation.  相似文献   

12.
DNA topoisomerase II has been implicated in regulating chromosome interactions. We investigated the effects of the specific DNA topoisomerase II inhibitor, teniposide on nuclear events during oocyte maturation, fertilization, and early embryonic development of fertilized Spisula solidissima oocytes using DNA fluorescence. Teniposide treatment before fertilization not only inhibited chromosome separation during meiosis, but also blocked chromosome condensation during mitosis; however, sperm nuclear decondensation was unaffected. Chromosome separation was selectively blocked in oocytes treated with teniposide during either meiotic metaphase I or II indicating that topoisomerase II activity may be required during oocyte maturation. Teniposide treatment during meiosis also disrupted mitotic chromosome condensation. Chromosome separation during anaphase was unaffected in embryos treated with teniposide when the chromosomes were already condensed in metaphase of either first or second mitosis; however, chromosome condensation during the next mitosis was blocked. When interphase two- and four-cell embryos were exposed to topoisomerase II inhibitor, the subsequent mitosis proceeded normally in that the chromosomes condensed, separated, and decondensed; in contrast, chromosome condensation of the next mitosis was blocked. These observations suggest that in Spisula oocytes, topoisomerase II activity is required for chromosome separation during meiosis and condensation during mitosis, but is not involved in decondensation of the sperm nucleus, maternal chromosomes, and somatic chromatin.  相似文献   

13.
Bacillus subtilis undergoes a highly distinctive division during spore formation. It yields two unequal cells, the mother cell and the prespore, and septum formation is completed before the origin-distal 70% of the chromosome has entered the smaller prespore. The mother cell subsequently engulfs the prespore. Two different probes were used to study the behavior of the terminus (ter) region of the chromosome during spore formation. Only one ter region was observed at the time of sporulation division. A second ter region, indicative of chromosome separation, was not distinguishable until engulfment was nearing completion, when one was in the mother cell and the other in the prespore. Separation of the two ter regions depended on the DNA translocase SpoIIIE. It is concluded that SpoIIIE is required during spore formation for chromosome separation as well as for translocation; SpoIIIE is not required for separation during vegetative growth.  相似文献   

14.
ng from delayed separation of chromatids and typical bridgeswere observed in Feulgen preparations. The analysis of C-bandedanaphases showed that delayed chromatids were held togetherat heterochromatic knob sites (primary event), and the presenceof typical bridges with and without bands corresponding to knobs.These events suggest the occurrence of breakage-fusion-bridge(BFB) cycles initiated by chromosome arms broken during theprimary event. Additional evidence for such a mechanism wasthe presence of gross aberrations involving chromosome 7, detectedin several C-banded metaphases of some cultures. It is hypothesizedthat such aberrations are duplication deficiencies producedby BFB cycles and chromosome healing that would have occurredafter some cell divisions. Zea mays L.; maize; tissue culture; chromosome breakage; heterochromatin; C-banding  相似文献   

15.
Sister chromatid cohesion is essential for accurate chromosome segregation during the cell cycle. Newly identified structural proteins are required for sister chromatid cohesion and there may be a link in some organisms between the processes of cohesion and condensation. Proteins that induce and regulate the separation of sister chromatids have also been recently identified.  相似文献   

16.
Jules O''Rear  Jasper Rine 《Genetics》1986,113(3):517-529
In Saccharomyces cerevisiae, a reciprocal translocation between chromosome II and a linear plasmid carrying a centromere (CEN6) has split chromosome II into two fragments: one, approximately 530 kilobase pairs (kbp) in size, has the left arm and part of the right arm of chromosome II; the other, a telocentric fragment approximately 350 kbp in size, has CEN6 and the rest of the right arm of chromosome II. A cross of this yeast strain with a strain containing a complete chromosome II exhibits a high frequency of precocious centromere separation (separation of sister chromatids during meiosis I) of the telocentric fragment. Precocious centromere separation is not due to the position of the centromere per se, since diploids that are homozygous for both fragments of chromosome II segregate the telocentric fragment with normal meiotic behavior. The precocious centromere separation described here differs from previously described examples in that pairing and synapsis of this telocentric chromosome seem to be normal. One model of how centromeres function in meiosis is that replication of the centromere is delayed until the second meiotic division. Data presented in this paper indicate that replication of the centromere is complete before the first meiotic division. The precocious separation of the centromere described here may be due to improper synapsis of sequences flanking the centromere.  相似文献   

17.
BACKGROUND: Mitotic chromosome segregation depends on bi-orientation and capture of sister kinetochores by microtubules emanating from opposite spindle poles and the near synchronous loss of sister chromatid cohesion. During meiosis I, in contrast, sister kinetochores orient to the same pole, and homologous kinetochores are captured by microtubules emanating from opposite spindle poles. Additionally, mechanisms exist that prevent complete loss of cohesion during meiosis I. These features ensure that homologs separate during meiosis I and sister chromatids remain together until meiosis II. The mechanisms responsible for orienting kinetochores in mitosis and for causing asynchronous loss of cohesion during meiosis are not well understood. RESULTS: During mitosis in C. elegans, aurora B kinase, AIR-2, is not required for sister chromatid separation, but it is required for chromosome segregation. Condensin recruitment during metaphase requires AIR-2; however, condensin functions during prometaphase, independent of AIR-2. During metaphase, AIR-2 promotes chromosome congression to the metaphase plate, perhaps by inhibiting attachment of chromatids to both spindle poles. During meiosis in AIR-2-depleted oocytes, congression of bivalents appears normal, but segregation fails. Localization of AIR-2 on meiotic bivalents suggests this kinase promotes separation of homologs by promoting the loss of cohesion distal to the single chiasma. Inactivation of the phosphatase that antagonizes AIR-2 causes premature separation of chromatids during meiosis I, in a separase-dependent reaction. CONCLUSIONS: Aurora B functions to resolve chiasmata during meiosis I and to regulate kinetochore function during mitosis. Condensin mediates chromosome condensation during prophase, and condensin-independent pathways contribute to chromosome condensation during metaphase.  相似文献   

18.
Sister chromatid cohesion and separation are two fundamental chromosome dynamics that are essential to equal chromosome segregation during cell proliferation. In this review, I will discuss the major steps that regulate these dynamics during mitosis, with an emphasis on vertebrate cells. The implications of these machineries outside of sister chromatid cohesion and separation are also discussed.  相似文献   

19.
Sister chromatid cohesion is essential for accurate chromosome segregation during the cell cycle. Newly identified structural proteins are required for sister chromatid cohesion and there may be a link in some organisms between the processes of cohesion and condensation. Proteins that induce and regulate the separation of sister chromatids have also been recently identified. (This review is an updated version of one that was published in Current Opinion in Cell Biology 1998, 10:769-775.)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号