首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A masting model of Betula platyphylla var. japonica, a majorwind-pollinated tree in Hokkaido, northern Japan, was constructedfrom the perspective of the resource budget model. An 11-yeardata series of pollen dispersal by birch showed marked annualfluctuations in flowering. Although flowering fluctuated widelyamong years, a reciprocal relationship was observed betweentwo consecutive years; very little flowering occurred aftera mast year. This suggests that there is a negative relationshipbetween current fruiting and flower bud induction. There wasa significant positive relationship in flowering between regions,which suggests that weather conditions regulate flowering inbirch. A model that included weather variables and resourceallocation systems among years explained 94·5% of theobserved annual fluctuations in flowering. In the model, warmspring conditions from bud burst to flower bud development andlittle flowering in the previous year (t-1) resulted in increasedflowering in the current year (t), whereas abundant floweringin year t-2 resulted in a decrease in flowering in the currentyear (t). The latter indicates that flowering in year t-2 affectsresource storage after overwintering; the balance is carriedforward to year t-1 and affects the initiation of flower primordiabefore bud burst. In the model, fluctuating weather conditionsin the previous spring strongly affected the masting behaviourof birch. Copyright 2001 Annals of Botany Company Betula platyphylla var. japonica, flowering, masting, modelling, pollen dispersal, resource allocation, resource budget model, weather conditions  相似文献   

2.
SHAH  J. J.; DAVE  Y. S. 《Annals of botany》1971,35(3):627-635
The ontogenetic development of the tendril and its associatedorgans is investigated in 17 species of Passiflora. The shootapex shows a single tunica layer though the second layer simulatestunica. The cytohistological zonation is not a constant feature.In P. caerulea Linn., it is distinct at leaf initiation butin P. pruinosa Mast., P. vespertilio Linn., and P. watsonianaMast., it is indistinct. The main axillary bud differentiatesfrom the peripheral meristem of the shoot apex. The differentiationof this bud into floral and tendril menstems occurs at a nodeimmediately below the shoot apex in P. minima Blanco. and Pracemosa Brot. In other species this differentiation generallyoccurs at the lower nodes. The floral meristem is initiatedas an accessory bud from this bud, thus forming a bud complex.The residuum of the bud complex develops as a tendril. The thirdaccessory bud which does not originate from this bud complex,develops into a vegetative branch. The fundamental nature ofthe vascular relationship between the flower, tendril, accessorybud, subtending leaf, and the axis is similar in most of theinvestigated species.  相似文献   

3.
DE RUITER  H. A. 《Annals of botany》1996,77(1):99-104
In three experiments (twoin-vivo, onein-vitro), an attempt wasmade to separate the possible effects of age and position ofaxillary buds of chrysanthemum on bud outgrowth and the subsequentquality of cuttings. In thein-vivoexperiments, bud age and bud position were notsignificant factors in bud outgrowth and subsequent qualityof cuttings. Nevertheless, most outgrowth parameters showedslightly higher values for the lower positioned buds and thetime needed to produce a cutting tended to decrease with theage of the axillary bud. In thein-vitroexperiment, the relationship between age and thevarious parameters showed an optimum. axillary bud; Chrysanthemum morifolium; Dendranthema grandiflora; Age; cutting; chrysanthemum; position  相似文献   

4.
Information in the literature suggests that the process of applebud morphogenesis is controlled by the level of growth substances,notably gibberellins in the bud, and by the availability ofgrowth substrate (S). The spur buds of apples must contain acertain minimum number of nodes (Nm) before flower primordiacan be formed, and the process of bud morphogenesis can be describedby a rate of node production with time, t by the equation It is postulated that the parameter kG is a function of thebalance between the enzymes systems in the bud, the rate ofsynthesis of the enzymes associated with the development offloral bud parts (floral enzymes) being inversely related tothe level of gibberellins (G) in the bud. The parameter kG isa function of the nutritional state of the bud; a is a rateparameter, and i is a conversion factor. Node production rateis asymptotic with increase in S, but switches from high tolow values as G varies about a critical concentration. The implicationsof the model, which appears to describe most observations, arediscussed, and some suggestions for testing it are put forward.  相似文献   

5.
The effect of assimilate supply on axillary bud developmentand subsequent shoot growth was investigated in roses. Differencesin assimilate supply were imposed by differential defoliation.Fresh and dry mass of axillary buds increased with increasedassimilate supply. The growth potential of buds was studiedeither by pruning the parent shoot above the bud, by graftingthe bud or by culturing the bud in vitro. Time until bud breakwas not clearly affected by assimilate supply during bud development,Increase in assimilate supply slightly increased the numberof leaves and leaf primordia in the bud; the number of leavespreceding the flower on the shoot grown from the axillary budsubstantially increased. No difference was found in the numberof leaves preceding the flower on shoots grown from buds attachedto the parent shoot and those from buds grafted on a cutting,indicating that at the moment of release from inhibition thebud meristem became determined to produce a specific numberof leaves and to develop into a flower. Assimilate supply duringaxillary bud development increased the number of pith cells,but the final size of the pith in the subsequent shoot was largelydetermined by cell enlargement, which was dependent on assimilatesupply during shoot growth. Shoot growth after release frominhibition was affected by assimilate supply during axillarybud development only when buds sprouted attached to the parentshoot, indicating that shoot growth is, to a major extent, dependenton the assimilate supply available while growth is taking place.Copyright1994, 1999 Academic Press Assimilate supply, axillary bud, cell number, cell size, defoliation, development, growth potential, meristem programming, pith, Rosa hybrida, rose, shoot growth  相似文献   

6.
Regulation of Branching in Decussate Species with Unequal Lateral Buds   总被引:1,自引:0,他引:1  
In the decussate plants Alternanthera philoxeroides and Hygrophilasp. the opposite axillary bud primordia are of unequal sizefrom the time of their inception; the larger or + buds lie alongone helix and the smaller or – buds along another (helicoidalsystem). In decapitated plants of Alternanthera both buds grewout, but unequally; if the node was vertically split growthof the two shoots was more equal, and if the + buds were excisedgrowth of the – shoots approximately equalled that ofcontrol + shoots. In decapitated shoots of Hygrophila grownin sterile culture only one bud, the + or larger one, grew outat each of the upper nodes. In excised cultured nodes, also,only the + bud grew out; but if the nodes were split longitudinallyboth buds grew out, initially rather unequally. These experimentssupport the view that the regulation of branching in these specieshas two components, apical dominance and the dominance of thelarger (+) bud over the smaller (–) bud at the same node.The restriction of growth potentiality imposed on the –bud is not permanent but can be modified. Further correlativeeffects on bud outgrowth include those of the subtending leavesand of buds at other nodes.  相似文献   

7.
Buds of sweet orange, harvested from shoots of different timeof flushing and from different positions along the shoot, wereused to examine whether lack of burst of inserted buds was acharacteristic of the bud. Bursting of inserted buds was significantlyslower in buds taken from (a) older branches (b) shoots producedunder winter conditions, and (c) basal rather than apical budson the same shoot. The slowness to burst when transferred matched a tendency todormancy in buds on shoot segments grown in vitro, suggestingthat the variation in budburst was intrinsic to the bud. Budburstwas correlated with the extent of secondary bud development;the majority of buds from apical regions of the shoot had developeda secondary bud by the time of implantation, but basal budshad not. Adequate vascular connections with the host tissueswere found in both burst and unburst buds. Citrus sinensis (L.) Osbeck, sweet orange, buds, endodormancy, budding  相似文献   

8.
TANIMOTO  S.; HARADA  H. 《Annals of botany》1980,45(3):321-327
Leaf discs of Perilla frutescens var. crispa f. viridi-crispawere cultured on a defined medium to investigate factors influencingbud and root formation, callus induction, somatic embryogenesis,and floral bud formation. Addition of naphthalene-acetic acid(NAA) to the culture medium caused compact callus whereas 2,4-dichlorophenoxyacetic acid (2,4-D) promoted soft and friable callus formationon the surface of the explants. Benzyladenine, when appliedwith auxin, suppressed callus and root formation. Somatic embryogenesisoccurred, when the explants were first grown on nutrient mediumcontaining 2,4-D and organic elements, and then transferredto the 2,4-D free medium. Treatments with cytokinins, N-phenyl-N'-(4-pyridyl)urea and its derivatives induced bud formation. A low concentrationof NAA and naphthoxy-acetic acid promoted bud development. Occasionalfloral bud formation was observed depending on the originalleaf positions on mother plants from which the leaf discs wereexcised. A gradient of floral bud forming capacity along thestem was noted. Perilla frutescens, tissue culture, embryogenesis, morphogenesis, benzyl adenine, kinetin, naphthalene-acetic acid, naphthoxy-acetic acid, 2,4-dichlorophenoxy acetic acid, indol-3yl-acetic acid, cytokinins, auxins  相似文献   

9.
The effect of axillary bud age on the development and potentialfor growth of the bud into a shoot was studied in roses. Ageof the buds occupying a similar position on the plant variedfrom 'subtending leaf just unfolded' up to 1 year later. Withincreasing age of the axillary bud its dry mass, dry-matterpercentage and number of leaves, including leaf primordia, increased.The apical meristem of the axillary bud remained vegetativeas long as subjected to apical dominance, even for 1 year. The potential for growth of buds was studied either by pruningthe parent shoot above the bud, by grafting the bud or by culturingthe bud in vitro. When the correlative inhibition (i.e. dominationof the apical region over the axillary buds) was released, additionalleaves and eventually a flower formed. The number of additionalleaves decreased with increasing bud age and became more orless constant for axillary buds of shoots beyond the harvestablestage, while the total number of leaves preceding the flowerincreased. An increase in bud age was reflected in a greaternumber of scales, including transitional leaves, and in a greaternumber of non-elongated internodes of the subsequent shoot.Time until bud break slightly decreased with increasing budage; it was long, relatively, for 1 year old buds, when theysprouted attached to the parent shoot. Shoot length, mass andleaf area were not clearly affected by the age of the bud thatdeveloped into the shoot. With increasing bud age the numberof pith cells in the subsequent shoot increased, indicatinga greater potential diameter of the shoot. However, final diameterwas dependent on the assimilate supply after bud break. Axillarybuds obviously need a certain developmental stage to be ableto break. When released from correlative inhibition at an earlierstage, increased leaf initiation occurs before bud break.Copyright1994, 1999 Academic Press Age, axillary bud, cell number, cell size, pith, shoot growth, Rosa hybrida, rose  相似文献   

10.
InRosa hybridaL. cv. Ruidriko ‘Vivaldi’®, theeffect of position on growth and development potentials of axillarybuds was investigated by single internode cuttings excised alongthe floral stem and its bearing shoot. The experiments werecarried out in both glasshouses and in a phytotron. The studyfirstly concerned the development of the primary shoot fromthe onset of bud growth until anthesis. The primary shoot wasthen bent horizontally to promote the growth of the two mostproximal secondary buds, the collateral buds, already differentiatedinside the primary bud. They gave rise to basal shoots. In thebasipetal direction, the axillary buds along the floral stemexhibited both an increase in the lag time before bud growthand a decrease in bud growth percentage, demonstrating the existenceof a physiological basipetal gradient of inhibition intrinsicto the buds or due to short range correlations. The same basipetalgradient of inhibition was observed along the floral stem andits bearing shoot, demonstrating that the age of the bud wasnot a major factor in determining the rate of bud growth. Afterbending the primary shoot, the percentage of collateral budgrowth was also affected by the cutting position. The more proximalthe cutting, the lower the sprouting ability of collateral buds.The growth potential of these buds appeared to be already determinedinside the main bud before cutting excision.Copyright 1998 Annalsof Botany Company Axillary bud; basal shoot; cutting; development; endodormancy; growth; paradormancy; position; primary shoot;Rosa hybridaL.; rose; secondary bud; topophysis.  相似文献   

11.
An anatomical study was made of bud dimorphism in in vitro shootcultures of Lapageria rosea cv. Nashcourt, utilizing the presenceand absence of the gibberellin-biosynthesis inhibitor paclobutrazol(10 µM) in the medium to control the development of axillarybuds. Patterns of axillary bud development differed betweenthe aerial pattern of shoot extension (in the absence of paclobutrazol)and rhizome bud formation (in the presence of paclobutrazol),with respect to planes of cell division, cell expansion andthe formation of adventitious root primordia. These differencesare examined and discussed. Lapageria rosea cv. Nashcourt, Chilean Bellflower, rhizome bud, paclobutrazol, gibberellin biosynthesis inhibitor, micropropagation  相似文献   

12.
CLINE  M. G.; RILEY  L. 《Annals of botany》1984,53(6):897-900
The presentation time for shoot inversion release of apicaldominance in Pharbitis nil is between 1 and 1.5 d. Five to 6d of shoot inversion are required for persistent outgrowth ofthe highest lateral bud. Pharbitis nil, apical dominance, shoot inversion, lateral bud growth, presentation time  相似文献   

13.
Axillary buds on the most basal portion of the seedling shootof Sorghum halepense differentiate directly into rhizome buds.The initial orientation of these buds is upwards, but this orientationstarts to be reversed almost immediately. The reversal is causedby the combined effect of differential radial expansion of thebasal internodes immediately above and below the bud, and differencesin the extent of mitotic activity on the abaxial and adaxialsides of the bud. Reorientation is a geotropic and is progressivelyless with acropetal nodal position of the bud. Further growthof the rhizomes proceeds in the same orientation as that ofthe bud from which they had developed, until they change theirorientation again by exhibiting diageotropic, or negativelygeotropic responses. The second reorientation coincides moreor less with the onset of flowering and it exhibits a positionalgradient, such that the change is more extensive the higherthe nodal position of the rhizome. Sorghum halepense, rhizome, geotropism, morphogenesis, perennial weeds  相似文献   

14.
In plants held under long days in the vegetative stage, youngexpanding leaves of poinsettia (Euphorbia pulcherrima Willd.‘Brilliant Diamond’) are the main source of axillarybud inhibition, while the apical bud, which includes the meristem,primordial leaves and small unfolded leaves, is a secondaryinhibition source. Removal of these expanding leaves resultedin rapid release and growth of axillary buds. Decapitation ofthe apical bud resulted in delayed axillary bud release. Inreproductive plants kept in short days, the pigmented bractsare the primary source of axillary bud inhibition and the cyathiaare the secondary source. Applications of NAA —substitutedfor both young leaves and bract inhibition — maintainedapical dominance. The concentration of endogenous auxin washighest in the apical bud. However, when calculated on wholeorgan basis the auxin level was greater in young developingvegetative leaves and in reproductive bracts than in the apicalbud. Euphorbia pulcherrima Willd, apical bud, apical dominance, auxin, correlative inhibition, cyathia, poinsettia, IAA, NAA  相似文献   

15.
The caespitose grasses Agropyron spicatum and Agropyron desertorumexhibit a striking difference in tillering response followingexperimental clipping treatment, with plants of A. desertorumproducing up to 18 times more tillers. The two species are similarin many aspects of their phenology and physiology. Previousexamination of current photosynthate production and levels ofstored carbohydrates indicate only slight differences betweenthe species. The possible role of three anatomical/morphologicalconstraints in controlling tillering was examined. No evidencefor such constraints was found. A basal cluster of buds is presenton the parent tillers. The mean bud number per tiller was similarfor both species and the range (3–9) was identical. Nearlyall of the bud apical meristems appeared anatomically viablethroughout the growing season and vascular development occurredto within 250 to 490 µm of the various bud apices of bothspecies. Both normal fall tillers and summer tillers producedunder clipping treatment originated from the largest, most distalbuds of the basal cluster of buds. However, precocious, morphologicallydistinctive, second-order tillers occasionally grew out fromthe smaller, most basal buds of some elongating fall tillers. Agropyron spicatum, Agropyron desertorum, bluebunch wheatgrass, crested wheatgrass, bud, tiller, tillering ability, meristematic potential, vascular development, regrowth  相似文献   

16.
Development of Axillary and Leaf-opposed Buds in Rattan Palms   总被引:1,自引:0,他引:1  
Axillary vegetative buds are present in Calamus, Ceratolobus,and Plectocomiopsis. Two species of Daemonorops Sect. Piptospathaalso have axillary vegetative buds. All species of Daemonoropshave only displaced adnate axillary inflorescence buds. A singlebud is initiated in the axil of the first or second leaf primordiumin a way similar to that for axillary inflorescence buds. Themeristem is displaced during development on to the internodeabove and sometimes on to the base of the leaf above. Leaf-opposedvegetative buds occur in five species of Daemonorops Sect. Cymbospathaand in one species of Daemonorops Sect. Piptospatha. This typeof bud is initiated 180° away from the axil of the firstor second leaf primordium. It is not a displaced axillary bud,but does become adnate to the internode above like the axillarybuds. One or more leaves, transitional between juvenile andadult, on a shoot often subtend both types of buds. Myrialepishas leaf-opposed vegetative buds, but their development wasnot observed. Korthalsia has buds that are displaced about 130°from the leaf axil and are intermediate between the axillaryand the leaf-opposed condition. Other forms of vegetative budsare described: multiple buds in Plectocomia, aerial forkingin Korthalsia, and suckering from inflorescences and from aerialstems in Calamus. bud development, rattan palms, palm taxonomy, branching  相似文献   

17.
Phaseolus vulgaris L. decapitated at the third internode showedaccelerated growth of the uppermost axillary bud remaining onthe stem (the first trifoliate axillary bud) after a lag periodof 3–5 h Much of the initial growth increment could beattributed to cell expansion Phaseolus vulgaris L, dwarf bean, correlative inhibition, cell expansion  相似文献   

18.
The effect of glucose on flower bud formation was studied inthin-layer tissue cultures of epidermal strips from flower stalksof Nicotiana tabacum L. cv. Samsun. A minimum concentration of 30 mol m–3 glucose in the MS-mediumcontaining 1.0 mmol m–3 of both NAA and BA was necessaryfor flower bud formation. With 150 mol m–3 glucose a minimumstay of 10 d was required for optimal flower bud formation. Withholding glucose for a limited period at different time intervalsafter the onset of culture caused a delay in flower bud formationand did not affect previous development on glucose. The resultsindicated that competence for flower bud initiation is not restrictedto the early stage of culture. The process may start at anytime later at the appropriate glucose concentration. However,for both optimal initiation and further development of flowerbuds the presence of a metabolizable sugar is required. Incubationof the tissue on glucose is associated with higher respirationrate. Key words: Flower formation, Glucose, mannitol, Nicotiana tabacum, Respiration, tissue culture  相似文献   

19.
Apical dominance appears to have minimal direct involvementin daughter bulb formation in the bulbous Iris cultivar Ideal.Daughter bulb number and growth relate to the size and reproductivestate of the mother bulb and are not markedly influenced bymeristem destruction. In contrast, destruction or removal ofthe apical meristem promotes lateral bud sprouting in intactbulbs, and lateral bud elongation in Iris meristem explants.These results show that, in contrast to certain other bulbousplants, apical dominance does not direcdy limit daughter bulbnumber in bulbous Iris, but does prevent lateral bud sprouting. (Received September 6, 1978; )  相似文献   

20.
Exogenous Auxin Effects on Lateral Bud Outgrowth in Decapitated Shoots   总被引:16,自引:1,他引:15  
CLINE  MORRIS G. 《Annals of botany》1996,78(2):255-266
In 1933 Thimann and Skoog demonstrated exogenous auxin repressionof lateral bud outgrowth in decapitated shoots ofVicia faba. This evidence has given strong support for a role of auxinin apical dominance. Most, but not all, investigators have confirmedThimann and Skoog's results. In the present study, auxin treatmentswere carried out on ten different species or plant types, manyof which were treated with auxin in different forms, media andunder different light conditions. The Thimann–Skoog experimentdid work for most species (i.e. exogenous auxin did repressbud outgrowth) including thedgt tomato mutant which is knownto be insensitive to auxin in certain responses. Toxic auxinsymptoms were observed in some but not all species. The Thimann–Skoogexperiment did not work for greenhouse-grownColeus or forArabidopsis. Light was shown to reduce apical dominance inColeus andIpomoeanil . apical dominance; lateral bud outgrowth; axillary bud; auxin; IAA; decapitation; Vicia faba ; Ipomoea nil ; Pisum sativum ; Phaseolus vulgaris ; Lycopersion exculentum ; dgt ; Coleus blumei ; Arabidopsis thaliana ; Helianthus annuus ; Thimann–Skoog  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号